Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are ...Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are studied in this paper. From the experimental results, the exponential value 0.25-0.5 which represents the relation of NBTI degradation and stress time is obtained. Based on the experimental results and existing model, the reaction-diffusion model with H^+ related species generated is deduced, and the exponent 0.5 is obtained. The results suggest that there should be H^+ generated in the NBTI degradation. With the real time method, the degradation with an exponent 0.5 appears clearly in drain current shift during the first seconds of stress and then verifies that H^+ generated during NBTI stress.展开更多
Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models i...Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models is confirmed by the good agreement between the simulated results and the experimental data. Based on the models, some factors impacting the threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor(MOSFET) are discussed in detail and it is found that there is an optimum thickness of gate oxide for definite dielectric constant of gate oxide to obtain the minimum subthreshold swing. As a result, it is shown that the fringing-capacitance effect of a shortchannel GeOI MOSFET cannot be ignored in calculating the threshold voltage and subthreshold swing.展开更多
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ...Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
The conformal mapping of an electric field has been employed to develop an accurate parasitic capacitance model for nanoscale fin field-effect transistor(Fin FET) device. Firstly, the structure of the dual-layer spa...The conformal mapping of an electric field has been employed to develop an accurate parasitic capacitance model for nanoscale fin field-effect transistor(Fin FET) device. Firstly, the structure of the dual-layer spacers and the gate parasitic capacitors are thoroughly analyzed. Then, the Cartesian coordinate is transferred into the elliptic coordinate and the equivalent fringe capacitance model can be built-up by some arithmetical operations. In order to validate our proposed model, the comparison of statistical analysis between the proposed calculation and the 3D-TCAD simulation has been carried out, and several different material combinations of the dual-k structure have been considered. The results show that the proposed analytical model can accurately calculate the fringe capacitance of the Fin FET device with dual-k spacers.展开更多
在鳍型场效应晶体管(SOI FinFET)相关静电防护技术研究基础上,提出了一种新型的体区接触固定型绝缘体上硅鳍型场效应晶体管泄放钳位装置(Fix-base SOI FinFET Clamp)。该新型结构的器件解决了基区接触浮空在静电防护设计时引起的一系列...在鳍型场效应晶体管(SOI FinFET)相关静电防护技术研究基础上,提出了一种新型的体区接触固定型绝缘体上硅鳍型场效应晶体管泄放钳位装置(Fix-base SOI FinFET Clamp)。该新型结构的器件解决了基区接触浮空在静电防护设计时引起的一系列问题,而且对正常的FinFET工艺具有良好的兼容性。通过计算机辅助工艺设计(TCAD)仿真论证了Fix-base SOI FinFET Clamp具有明显效果,详细阐述和讨论了SOI FinFET和Fix-base SOI FinFET Clamp工作状态下的电流和热分布。展开更多
基金supported by the Fundamental Research Funds in Xidian Universities (Grant No.JY10000904009)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2007BAK25B03)
文摘Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are studied in this paper. From the experimental results, the exponential value 0.25-0.5 which represents the relation of NBTI degradation and stress time is obtained. Based on the experimental results and existing model, the reaction-diffusion model with H^+ related species generated is deduced, and the exponent 0.5 is obtained. The results suggest that there should be H^+ generated in the NBTI degradation. With the real time method, the degradation with an exponent 0.5 appears clearly in drain current shift during the first seconds of stress and then verifies that H^+ generated during NBTI stress.
基金supported by the National Natural Science Foundation of China(Grant No.61274112)
文摘Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models is confirmed by the good agreement between the simulated results and the experimental data. Based on the models, some factors impacting the threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor(MOSFET) are discussed in detail and it is found that there is an optimum thickness of gate oxide for definite dielectric constant of gate oxide to obtain the minimum subthreshold swing. As a result, it is shown that the fringing-capacitance effect of a shortchannel GeOI MOSFET cannot be ignored in calculating the threshold voltage and subthreshold swing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774019,51572033,and 51572241)the Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574056 and 61204038)the Natural Science Foundation of Shanghai,China(Grant No.14ZR1412000)
文摘The conformal mapping of an electric field has been employed to develop an accurate parasitic capacitance model for nanoscale fin field-effect transistor(Fin FET) device. Firstly, the structure of the dual-layer spacers and the gate parasitic capacitors are thoroughly analyzed. Then, the Cartesian coordinate is transferred into the elliptic coordinate and the equivalent fringe capacitance model can be built-up by some arithmetical operations. In order to validate our proposed model, the comparison of statistical analysis between the proposed calculation and the 3D-TCAD simulation has been carried out, and several different material combinations of the dual-k structure have been considered. The results show that the proposed analytical model can accurately calculate the fringe capacitance of the Fin FET device with dual-k spacers.
文摘在鳍型场效应晶体管(SOI FinFET)相关静电防护技术研究基础上,提出了一种新型的体区接触固定型绝缘体上硅鳍型场效应晶体管泄放钳位装置(Fix-base SOI FinFET Clamp)。该新型结构的器件解决了基区接触浮空在静电防护设计时引起的一系列问题,而且对正常的FinFET工艺具有良好的兼容性。通过计算机辅助工艺设计(TCAD)仿真论证了Fix-base SOI FinFET Clamp具有明显效果,详细阐述和讨论了SOI FinFET和Fix-base SOI FinFET Clamp工作状态下的电流和热分布。