期刊文献+
共找到625篇文章
< 1 2 32 >
每页显示 20 50 100
基于K互近邻与核密度估计的DPC算法 被引量:1
1
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
在线阅读 下载PDF
混合多策略北方苍鹰优化算法及特征选择
2
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
基于快速特征逼近谱图注意力网络的滚动轴承半监督智能故障诊断研究
3
作者 宁少慧 杜越 周利东 《机床与液压》 北大核心 2025年第6期33-39,共7页
基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据... 基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据,丰富了数据特征;将图数据输入到构建的诊断模型中,学习故障信息特征,并分析不同的标签比例训练集的诊断结果。同时,分析了Sum、Mean、Max 3种池化方式和超参数对诊断模型的影响;最后,分别在两组实验轴承数据集上进行验证。结果表明:所提模型可以有效地捕获图的全局模式,降低计算复杂度,在全监督诊断任务中其诊断准确率可以保持在99%以上;在标签比例为10%的半监督任务中,其诊断准确率仍能保持在93.5%,所提诊断模型在半监督任务中有良好表现。 展开更多
关键词 轴承 故障诊断 快速特征逼近谱图注意力网络 K近邻图算法
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
4
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于改进双目ORB-SLAM3的特征匹配算法
5
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
6
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
7
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
风力机齿轮箱无监督故障诊断方法研究
8
作者 俎海东 焦晓峰 +2 位作者 张万福 孙康 李春 《动力工程学报》 北大核心 2025年第1期106-114,130,共10页
针对风力机齿轮箱振动信号具有强非线性特征,提出了改进变分模态分解方法对信号进行分解以提取特征分量,并以混沌相图及Lyapunov指数量化信号的非线性变化。采用随机近邻嵌入算法对多模态非线性故障特征集的冗余特征进行降维,以保证故... 针对风力机齿轮箱振动信号具有强非线性特征,提出了改进变分模态分解方法对信号进行分解以提取特征分量,并以混沌相图及Lyapunov指数量化信号的非线性变化。采用随机近邻嵌入算法对多模态非线性故障特征集的冗余特征进行降维,以保证故障特征提取的可靠性并提升故障诊断准确率,所提出的无监督故障诊断框架无需人为对故障样本进行标注,更适合工程应用,并将所提方法应用于NREL GRC风力机齿轮箱故障。结果表明:改进变分模态分解方法可准确实现多模态特征提取,结合随机近邻嵌入算法,可有效消除冗余特征保证故障信息的可靠性,且同类样本聚集、异类样本差异增大,聚类表现更清晰,提升了故障分类的准确率。 展开更多
关键词 齿轮箱 变分模态分解 混沌相图 LYAPUNOV指数 随机近邻嵌入算法 故障诊断
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
9
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度聚类算法 子簇融合
在线阅读 下载PDF
面向复杂场景目标提取的颜色增强与连通区域构造方法
10
作者 李明禄 赵春青 +2 位作者 侯茂新 王肖霞 杨风暴 《现代电子技术》 北大核心 2025年第13期20-28,共9页
针对现有特征提取方法在复杂场景下难以有效提取出完整目标区域的问题,提出一种基于HSV空间非线性颜色增强以及连通区域构造的方法。首先,依据目标颜色特征分析直方图分布特性得到目标提取多级阈值;其次,对不同光照条件导致目标提取效... 针对现有特征提取方法在复杂场景下难以有效提取出完整目标区域的问题,提出一种基于HSV空间非线性颜色增强以及连通区域构造的方法。首先,依据目标颜色特征分析直方图分布特性得到目标提取多级阈值;其次,对不同光照条件导致目标提取效果差的情况,通过构建不同光照下色调和明度的非线性映射关系进行增强提取;最后,对提取图像中连通性较差的区域提出最近邻骨架连接方法,提升目标区域的连通性,使其构成完整目标轮廓。通过多场景目标提取的检测对比实验,相较于形态学处理方法,所提方法总体平均检测精确率提升0.102 6。因此,利用文中目标提取方法能够提高复杂场景下无人探测平台的目标检测准确率。 展开更多
关键词 颜色空间 阈值分割 颜色增强 目标提取 骨架提取 最近邻连接算法
在线阅读 下载PDF
基于特征融合的往复式压缩机气阀故障诊断
11
作者 王康 宋朝琪 +4 位作者 聂方 袁宗泽 任护国 尧阳烽 余永华 《机床与液压》 北大核心 2025年第1期151-156,共6页
针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试... 针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试验获取进、排气阀不同典型故障下的热力参数和声发射信号,利用t-SNE降维算法将不同信号源提取的高维特征参数融合降维,并基于K-近邻算法(KNN)构建气阀故障诊断模型。结果表明:与其他降维算法相比,经t-SNE降维后,同类样本的类内距离小,不同类型故障样本类间距离较大,可以有效区分进排气阀的各类故障;多信号特征融合降维后,基于KNN分类算法构建的气阀故障诊断模型能有效识别气阀故障,其准确率为100%。 展开更多
关键词 气阀 故障诊断 t-分布随机近邻嵌入 特征融合 K-近邻算法
在线阅读 下载PDF
Falcon签名方案中格高斯采样算法的快速实现技术
12
作者 王师宇 高海英 宋杨 《密码学报(中英文)》 北大核心 2025年第1期133-147,共15页
Falcon签名方案是NIST公布的后量子数字签名标准之一.Falcon签名方案的关键步骤是快速傅里叶采样算法,该算法是Babai最近平面算法的一个变体.具体实现时,在离线阶段建立Falcon树,存储复杂度是O(n log n);在线签名阶段采用函数的递归调... Falcon签名方案是NIST公布的后量子数字签名标准之一.Falcon签名方案的关键步骤是快速傅里叶采样算法,该算法是Babai最近平面算法的一个变体.具体实现时,在离线阶段建立Falcon树,存储复杂度是O(n log n);在线签名阶段采用函数的递归调用方法输出短向量,时间复杂度O(n log n).为了降低在线签名阶段的时间复杂度,本文对快速傅里叶采样算法的实现方法进行改进,首先将Falcon树预处理为采样矩阵,再利用矩阵对经过排列变换的目标向量进行采样,最后输出与原算法相同的结果,改进算法的在线阶段时间复杂度降至O(n),从而提高了Falcon签名方案在线阶段的实现效率. 展开更多
关键词 NTRU格 Falcon签名方案 快速傅里叶采样 最近平面算法
在线阅读 下载PDF
基于Bayes超参数优化梯度提升树的心脏病预测方法
13
作者 王海燕 焦增晨 +2 位作者 赵剑 安天博 鞠熠 《吉林大学学报(理学版)》 北大核心 2025年第2期472-478,共7页
针对传统机器学习算法在数据集Cleveland和Hungary上预测准确率低的问题,提出一种基于Bayes超参数优化梯度提升树的心脏病预测方法.首先,采用K-最近邻算法对数据集中的缺失值进行填补,用Min-Max标准化、One-Hot编码处理数据,并基于梯度... 针对传统机器学习算法在数据集Cleveland和Hungary上预测准确率低的问题,提出一种基于Bayes超参数优化梯度提升树的心脏病预测方法.首先,采用K-最近邻算法对数据集中的缺失值进行填补,用Min-Max标准化、One-Hot编码处理数据,并基于梯度提升树算法进行心脏病预测;其次,采用Bayes优化和十倍交叉验证的方式搜寻算法的最佳超参数组合.实验结果表明,优化后的梯度提升树算法在心脏病数据集Cleveland上预测准确率可达90.2%,在心脏病数据集Hungary上预测准确率可达81.4%,优于决策树、支持向量机、K-最近邻等传统机器学习方法,可辅助医生进行心脏病诊断. 展开更多
关键词 心脏病预测 K-最近邻算法 梯度提升树 Bayes优化
在线阅读 下载PDF
面向卷绕机装配车间的无线信号聚类分层定位方法
14
作者 丁司懿 童辉辉 +1 位作者 毛新华 张洁 《纺织学报》 北大核心 2025年第6期212-222,共11页
为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分... 为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分类模型算法、K-means聚类算法和加权K最近邻(WKNN)算法的无线网络分层定位方法。同时,依据装配车间的特点与需求对定位区域进行有效划分并初步构建指纹库,根据装配车间内WiFi信号的特点,使用K-means聚类算法分割并更新指纹库;然后利用XGBoost分类模型算法确定子区域实现粗定位,再用WKNN算法精确定位。实验结果表明:该方法在定位精度上比传统WKNN算法提高了143.82%,平均定位时间减少了约20%;这些改进有效提升了卷绕机装配车间中无线网络定位的准确性和效率。 展开更多
关键词 卷绕机装配车间 无线网络 分层定位方法 XGBoost分类模型 K-MEANS聚类算法 加权K最近邻算法
在线阅读 下载PDF
基于动作空间扩展与奖励塑造的强化学习知识推理
15
作者 李鸿鹏 赵刚 《计算机工程与设计》 北大核心 2025年第7期1898-1904,共7页
为缓解知识图谱中数据稀疏导致推理路径缺失的问题,提出一种基于动作空间扩展和奖励塑造的强化学习知识推理方法。在知识表示模块,将知识图谱中的实体和关系映射到含有三元组语义和结构信息的向量空间中,建立强化学习环境;在强化学习模... 为缓解知识图谱中数据稀疏导致推理路径缺失的问题,提出一种基于动作空间扩展和奖励塑造的强化学习知识推理方法。在知识表示模块,将知识图谱中的实体和关系映射到含有三元组语义和结构信息的向量空间中,建立强化学习环境;在强化学习模块,提出一种动作空间扩展方法,通过引入先验知识,考虑实体间语义信息,寻找关联度最高的关系-实体作为头实体的扩充动作空间,提高路径的连通性。提出奖励塑造方法,设计路径长度奖励和路径重复负向奖励,鼓励智能体选择更加可靠和多样化的关系路径,进一步提升模型效果。实验结果表明,该模型在知识推理的链接预测和事实预测任务中,性能优于大部分现有模型。 展开更多
关键词 知识图谱 知识图谱推理 强化学习 知识表示 动作空间扩展 奖励塑造 K近邻算法
在线阅读 下载PDF
基于自然最近邻的联邦聚合算法
16
作者 施永辉 代琪 +1 位作者 陈丽芳 韩阳 《计算机工程》 北大核心 2025年第6期236-244,共9页
联邦学习框架在保护本地数据隐私的同时,面临着来自攻击者污染客户端数据的挑战,导致全局模型性能下降。目前主流联邦学习框架通常假设客户端本地数据是干净的,但实际情况中攻击者可通过数据污染手段来降低模型的准确性。为此,提出一种... 联邦学习框架在保护本地数据隐私的同时,面临着来自攻击者污染客户端数据的挑战,导致全局模型性能下降。目前主流联邦学习框架通常假设客户端本地数据是干净的,但实际情况中攻击者可通过数据污染手段来降低模型的准确性。为此,提出一种基于自然最近邻的联邦聚合算法。与其他传统联邦防御算法不同,该算法为非独立同分布条件下的联邦学习框架,能够防御有目标的攻击。该算法引入自然最近邻的搜索过程,通过此过程赋予模型异常度,有效区分异常模型。选取其中异常度较小的节点参与训练,确保正常节点参与的训练次数远大于恶意节点次数。实验结果表明,在非独立同分布条件下,该算法在标签翻转和后门攻击等有目标攻击的场景下,能保持模型性能稳定,增强了联邦学习框架的鲁棒性。即使受到恶意攻击,该算法能够有效维护全局模型的性能和可靠性,为解决客户端数据污染问题提供了有效途径,为联邦学习框架安全性和稳定性提供新思路。 展开更多
关键词 联邦学习 聚合算法 自然最近邻 鲁棒性 标签翻转
在线阅读 下载PDF
基于点云的发动机叶片损伤体积测量方法
17
作者 魏永超 刘家伟 +2 位作者 莫杜衡 岳雨琛 蔡双 《制造技术与机床》 北大核心 2025年第1期188-195,共8页
针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分... 针对当前发动机叶片损伤体积计算困难、误差较大的问题,提出一种基于点云的压气机叶片的损伤体积测量方法。首先,通过结构光扫描仪获取完整点云模型和损伤点云模型,配准分割得到缺损点云。其次,缺损点云经过姿态转换后与主成分轴对比分析、分层、切片、投影得到二维点云轮廓。最后,提出单向双次最近邻点搜索算法对二维点云的轮廓进行有序提取,使用坐标解析法求解投影面的面积,累加各层面积与切片间隔的乘积得到最终的体积。试验结果表明,提出的第一主成分轴方向切片体积计算效果更好,且轮廓提取算法对比凸包提取法、双向最近邻搜索和改进最近邻搜索算法(improved nearest point search,INPS)算法更准确,效率更高,与Geomagic软件结果相比平均相对误差不超过0.3%,证明了算法的高效性和有效性。 展开更多
关键词 压气机叶片 体积测量 点云 姿态转换 最近邻点搜索算法
在线阅读 下载PDF
模块化全固态波形可调冲击电压发生器
18
作者 王永刚 陶正强 +4 位作者 王琦 高毅凡 姜松 李孜 李柳霞 《强激光与粒子束》 北大核心 2025年第8期101-111,共11页
提出了一种不同于传统气体球间隙的冲击电压发生器,即基于电力电子技术的小型化冲击电压发生装置。其采用模块化多电平结构,以Marx拓扑作为主回路,MOSFET作为主开关,利用MATLAB通过最近电平逼近调制算法(NLM)对雷电波、或者雷电截波进... 提出了一种不同于传统气体球间隙的冲击电压发生器,即基于电力电子技术的小型化冲击电压发生装置。其采用模块化多电平结构,以Marx拓扑作为主回路,MOSFET作为主开关,利用MATLAB通过最近电平逼近调制算法(NLM)对雷电波、或者雷电截波进行拟合、调制,通过FPGA控制模块化冲击电压发生器,产生充电电压、波前时间、波尾时间、截断时间等可通过上位机灵活调节的冲击电压波形。测试结果表明:单个冲击电压模块最大输出电压为24 kV,共30级电压输出;5个冲击电压模块串联运行时,最高可产生150级不同电平数,峰值电压可达-100 kV的雷电波、或者雷电截波。 展开更多
关键词 MARX电路 高压雷电波 模块化结构 最近电平逼迫算法
在线阅读 下载PDF
图像特征点匹配算法下车辆行驶主动防撞预警
19
作者 张海民 刘训星 《安全与环境学报》 北大核心 2025年第1期41-49,共9页
对于车辆行驶过程中的防撞预警,如果无法识别前车的具体行驶状态,可能使系统反应速度较慢,而不能动态变化调整本车行驶策略,导致无法有效规避潜在碰撞的危险。为了提高车辆在行驶过程中对周围环境的感知能力,防止车辆碰撞事故的发生,提... 对于车辆行驶过程中的防撞预警,如果无法识别前车的具体行驶状态,可能使系统反应速度较慢,而不能动态变化调整本车行驶策略,导致无法有效规避潜在碰撞的危险。为了提高车辆在行驶过程中对周围环境的感知能力,防止车辆碰撞事故的发生,提出了图像特征点匹配算法下车辆行驶主动防撞预警方法。通过尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)对采集到的前车图像中的特征点展开提取;利用近似最近邻搜索算法完成特征点的匹配,并将匹配点对从像素坐标系转换到图像坐标系中,以完成对前车的定位;基于单帧静态图像测距方法获得车距,并将前车的行驶状态分为静止、减速、匀速或加速三种状态,计算不同状态下的提醒报警距离和危险报警距离,动态调整本车行驶策略。当车距达到提醒报警距离或危险报警距离时,发出报警,以此实现车辆行驶过程中的主动防撞预警。试验结果表明:利用图像特征点匹配算法下车辆行驶主动防撞预警方法对前车车距展开测量,测量结果与实际车距基本一致,准确度误差在5 cm以内,相较于差异化预警方法和车联网数据预警方法而言可以更精准地测量车距;此外,所提方法的风险系数最大值为0.12,远小于差异化预警方法和车联网数据预警方法的风险系数,证实了该方法的车辆定位准确度高、防撞预警性能强。 展开更多
关键词 安全工程 车辆防撞预警 图像特征点匹配 尺度不变特征变换算法 近似最近邻搜索算法 特征点提取
在线阅读 下载PDF
一种识别和检测人工智能生成文本的算法
20
作者 王雨欣 刘柯飞 +1 位作者 李雪莲 王红军 《电讯技术》 北大核心 2025年第3期378-384,共7页
针对目前人工智能(Artificial Intelligence,AI)生成文本的滥用导致的学术不端、侵犯版权、隐私保护和舆情监控等问题,提出了一种基于自然语言处理的AI生成文本的识别和检测算法。该算法首先采用Word2vec方法中的连续词袋模型将文本词... 针对目前人工智能(Artificial Intelligence,AI)生成文本的滥用导致的学术不端、侵犯版权、隐私保护和舆情监控等问题,提出了一种基于自然语言处理的AI生成文本的识别和检测算法。该算法首先采用Word2vec方法中的连续词袋模型将文本词转换成词向量,并将词向量累加获得文本向量。随后利用softmax函数获取文本向量的概率分布,通过统计可视化分析AI生成文本的基本规律,并采用余弦相似性来判断文本类型。其次采用支持向量机递归特征消除算法判断文本是否由AI生成,通过K-近邻算法对文本重生成次数进行判断,进一步细化了文本检测的粒度。通过仿真实验验证了算法的有效性,结果显示算法识别准确率达80%及以上。 展开更多
关键词 AI生成文本检测 文本向量 余弦相似性 支持向量机(SVM) K-近邻(KNN)算法
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部