期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NIRS Prediction of SOM,TN and TP in a Meadow in the Sanjiang Plain,China
1
作者 Zhao Yi-hang Jiang Jing-wen +5 位作者 Yang Yu-peng Zhang Xiao-meng Meng Ling-dong Ma Ze-wang Hu Yao Yin Xiu-jie 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第4期46-55,共10页
The aim of this study was to establish the applicability of near-infrared reflectance spectroscopy(NIRS)as a rapid method for the accurate estimation of nutrient components in agricultural soils.Focusing on the soil o... The aim of this study was to establish the applicability of near-infrared reflectance spectroscopy(NIRS)as a rapid method for the accurate estimation of nutrient components in agricultural soils.Focusing on the soil of the Sanjiang Plain,NIRS was used to predict soil organic matter(SOM),the total nitrogen(TN)and the total phosphorus(TP).A total of 540 samples were collected from the three different depths(180 samples from each depth:0-10,10-20 and 20-30 cm),from 2015 to 2017,from the Sanjiang Plain in Heilongjiang Province,China.From every depth,120 samples were used to construct the calibration set.Other 60 samples were used to check the efficiency of the model.Combining the first-order differentiation with the partial least square(PLS)method,a prediction model was obtained to measure SOM,TN and TP.The correlation coefficient of SOM from 0 to 10 cm was R2=0.9567,from 10 to 20 cm was R2=0.9416,and from 20 to 30 cm was R2=0.9402.The corresponding ratio(standard deviation[SD]/root mean square error of prediction[RMSEP])was>2.96.R2 of TN with the three depths was 0.9154,0.9028 and 0.9024,respectively,all with SD/RMSEP>2.89.Meanwhile,R2 of TP with the three depths was 0.8974,0.8624 and 0.7804,respectively,all with SD/RMSEP>2.50.These results demonstrated that NIRS based on the first-order differentiation and PLS could efficiently predict SOM,TN and TP from different soil depths. 展开更多
关键词 near-infrared reflectance spectroscopy(nirS) organic matter total nitrogen total phosphorus
在线阅读 下载PDF
近红外光谱技术对闽南乌龙茶品种的识别研究 被引量:23
2
作者 程权 杨方 +2 位作者 王丹红 林振宇 邱彬 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期656-659,共4页
采用近红外光谱技术建立了一种快速无损的乌龙茶品种识别方法。收集闽南地区不同茶场中铁观音、黄金桂、本山、毛蟹与梅占等5个品种共210份具有代表性的乌龙茶样品,采集近红外光谱数据,选用1100~1300 nm ,1640~2498 nm作为检测波... 采用近红外光谱技术建立了一种快速无损的乌龙茶品种识别方法。收集闽南地区不同茶场中铁观音、黄金桂、本山、毛蟹与梅占等5个品种共210份具有代表性的乌龙茶样品,采集近红外光谱数据,选用1100~1300 nm ,1640~2498 nm作为检测波长范围,利用主成分分析法(principal component analysis , PCA)建立模型,并在实验过程中比较多元散射校正(multiplicative scatter correction ,MSC)与标准正态变量校正(standard normal variate ,SNV)两种数据预处理方法对模型的影响。实验结果表明,多元散射校正对模型的影响优于标准正态变量校正,对校正集的识别准确率达到了96%,对预测集中样品的识别准确率达到了90%。实验结果证明了采用近红外光谱技术可以快速无损识别闽南地区乌龙茶,具有较强的实用价值和推广价值。 展开更多
关键词 乌龙茶 种类识别 近红外光谱 主成分分析 欧氏距离判别法 near-infrared spectroscopy (nirS) Principal component analysis (PCA)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部