WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological d...The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.展开更多
Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joint...Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios.展开更多
As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed...As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed on the crushing characteristics of steel slag,single particle crushing tests were carried out.The research focuses on the correlation between parameters such as the load−displacement relationship of single particles,crushing mode,crushing energy,and Weibull modulus,as well as external loading rate and quantified morphological parameters.The results show that the single particle crushing modes of steel slag mainly consist of three modes:through-splitting,complete fragmentation and local cutting;Compared with natural aggregates or recycled materials,steel slag particles are found to potentially exhibit higher compressive strength and the increase in loading rate further accelerates the occurrence of particle crushing behavior;Significant impacts on the crushing mode and characteristic stress of steel slag particles are exerted by their shape differences,and the energy release mode is jointly regulated by shape and loading rate.This research provides theoretical guidance and technical support for the diversified utilization of steel slag single particles,a new type of solid waste resource.展开更多
To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
Low collateral damage weapons achieve controlled personnel injury through the coupling of shock waves and particle swarms,where the particle swarms arise from the high-explosive dispersion of compacted metal particle ...Low collateral damage weapons achieve controlled personnel injury through the coupling of shock waves and particle swarms,where the particle swarms arise from the high-explosive dispersion of compacted metal particle ring.To investigate the dynamic response of the human target under combined shock waves and particle swarms loading,a physical human surrogate torso model(HSTM)was developed,and the dynamic response test experiment was conducted under the combined loading.The effects of particle size on the loading parameters,the damage patterns of the ballistic plate and HSTM,and the dynamic response parameters of the HSTM with and without protection are mainly analyzed.Our findings revealed that particle swarms can effectively delay the shock wave attenuation,especially the best effect when the particle size was 0.28–0.45 mm.The ballistic plate mainly exhibited dense perforation of the outer fabric and impacted crater damage of ceramic plates,whereas the unprotected HSTM was mainly dominated by high-density and small-size ballistic cavity group damage.The peak values of the dynamic response parameters for the HSTM under combined loading were significantly larger than those under bare charge loading,with multiple peaks observed.Under unprotected conditions,the peak acceleration of skeletons and peak pressure of organs increased with the particle size.Under protected conditions,the particle size,the number of particles hit,and the fit of the ballistic plate to the HSTM together affected the dynamic response parameters of the HSTM.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t...This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.展开更多
The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) appro...The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.展开更多
Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were...Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.展开更多
The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image ...The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image velocimetry(PIV) measurement. The experiments were conducted in a dredging pump model at Hohai University. Some transparent glass spheres with diameter of 0. 2-0. 4 mm were used as solid particles. The concentration and relative velocities of the particles were analyzed to investigate the particle trajectory. The results show that the concentration of the particles on the pressure surfaces of the blades is higher than on the suction surfaces,and the particles tend to move towards the suction surfaces. Moreover,the particles have faster relative velocities than the liquid phase through the flow channels of the impeller.展开更多
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ...As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.展开更多
A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparen...A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparent sand was made of baked quartz and a pore fluid with a matching refractive index. The physical modelling system consists of a loading system, a laser light, a CCD camera, an optical platform and a computer for image analyzing. A distinctive laser speckle was generated by the interaction between the laser light and transparent soil. Two laser speckle images before and after deformation were used to calculate the soil displacement field using PIV. Two pipe piles with different diameters under oblique pullout loads at angles of 0°, 30°, 45°, 60° and 90° were used in tests. The load-displacement response, oblique pullout ultimate resistances and soil displacement fields were then studied. The test results show that the developed physical modelling method and transparent soil are suitable for pile-soil interaction problems. The soil displacements around the pipe piles will improve the understanding on the capacity of pipe piles under oblique pullout loads.展开更多
To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)alumin...To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors ...Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors deployment in multidimensional space has greater research significance and practical potential to satisfy the detecting needs in complex environment.Aiming at solving this issue, a multi-dimensional space sensor network model is established, and the radar system is selected as an example. Considering the possible working mode of the radar system(e.g., searching and tracking), two distinctive deployment models are proposed based on maximum coverage area and maximum target detection probability in the attack direction respectively. The latter one is usually ignored in the previous literature.For uncovering the optimal deployment of the sensor network, the particle swarm optimization(PSO) algorithm is improved using the proposed weights determination scheme, in which the linear decreasing, the pooling strategy and the cloud theory are combined for weights updating. Experimental results illustrate the effectiveness of the proposed method.展开更多
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
文摘The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.
基金Project(SICGM2023301) supported by the State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology,ChinaProject(SMDPC202202) supported by the Key Laboratory of Mining Disaster Prevention and Control,ChinaProject(U21A2030) supported by the National Natural Science Foundation of China。
文摘Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios.
基金Project(52025085)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(52208421,52408394)supported by the National Natural Science Foundation of China+2 种基金Project(2023JJ40050)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2024JJ1001)supported by the Science Fund for Creative Research Groups of Hunan Provincial Natural Science Foundation,ChinaProject(kfj210201)supported by the Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education(Changsha University of Science&Technology),China。
文摘As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed on the crushing characteristics of steel slag,single particle crushing tests were carried out.The research focuses on the correlation between parameters such as the load−displacement relationship of single particles,crushing mode,crushing energy,and Weibull modulus,as well as external loading rate and quantified morphological parameters.The results show that the single particle crushing modes of steel slag mainly consist of three modes:through-splitting,complete fragmentation and local cutting;Compared with natural aggregates or recycled materials,steel slag particles are found to potentially exhibit higher compressive strength and the increase in loading rate further accelerates the occurrence of particle crushing behavior;Significant impacts on the crushing mode and characteristic stress of steel slag particles are exerted by their shape differences,and the energy release mode is jointly regulated by shape and loading rate.This research provides theoretical guidance and technical support for the diversified utilization of steel slag single particles,a new type of solid waste resource.
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
文摘Low collateral damage weapons achieve controlled personnel injury through the coupling of shock waves and particle swarms,where the particle swarms arise from the high-explosive dispersion of compacted metal particle ring.To investigate the dynamic response of the human target under combined shock waves and particle swarms loading,a physical human surrogate torso model(HSTM)was developed,and the dynamic response test experiment was conducted under the combined loading.The effects of particle size on the loading parameters,the damage patterns of the ballistic plate and HSTM,and the dynamic response parameters of the HSTM with and without protection are mainly analyzed.Our findings revealed that particle swarms can effectively delay the shock wave attenuation,especially the best effect when the particle size was 0.28–0.45 mm.The ballistic plate mainly exhibited dense perforation of the outer fabric and impacted crater damage of ceramic plates,whereas the unprotected HSTM was mainly dominated by high-density and small-size ballistic cavity group damage.The peak values of the dynamic response parameters for the HSTM under combined loading were significantly larger than those under bare charge loading,with multiple peaks observed.Under unprotected conditions,the peak acceleration of skeletons and peak pressure of organs increased with the particle size.Under protected conditions,the particle size,the number of particles hit,and the fit of the ballistic plate to the HSTM together affected the dynamic response parameters of the HSTM.
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
基金supported by the Chinese Ministry of Science and Intergovernmental Cooperation Project (2009DFA12870)the National Science Foundation of China (60974062,60972119)
文摘This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.
文摘The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.
文摘Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.
文摘The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image velocimetry(PIV) measurement. The experiments were conducted in a dredging pump model at Hohai University. Some transparent glass spheres with diameter of 0. 2-0. 4 mm were used as solid particles. The concentration and relative velocities of the particles were analyzed to investigate the particle trajectory. The results show that the concentration of the particles on the pressure surfaces of the blades is higher than on the suction surfaces,and the particles tend to move towards the suction surfaces. Moreover,the particles have faster relative velocities than the liquid phase through the flow channels of the impeller.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.
基金Project(51478165)supported by the National Natural Science Foundation of ChinaProject(2013B31814+1 种基金2014B07214)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparent sand was made of baked quartz and a pore fluid with a matching refractive index. The physical modelling system consists of a loading system, a laser light, a CCD camera, an optical platform and a computer for image analyzing. A distinctive laser speckle was generated by the interaction between the laser light and transparent soil. Two laser speckle images before and after deformation were used to calculate the soil displacement field using PIV. Two pipe piles with different diameters under oblique pullout loads at angles of 0°, 30°, 45°, 60° and 90° were used in tests. The load-displacement response, oblique pullout ultimate resistances and soil displacement fields were then studied. The test results show that the developed physical modelling method and transparent soil are suitable for pile-soil interaction problems. The soil displacements around the pipe piles will improve the understanding on the capacity of pipe piles under oblique pullout loads.
基金supported by National Natural Science Foundation of China (Grant no.11502194)
文摘To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
文摘Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors deployment in multidimensional space has greater research significance and practical potential to satisfy the detecting needs in complex environment.Aiming at solving this issue, a multi-dimensional space sensor network model is established, and the radar system is selected as an example. Considering the possible working mode of the radar system(e.g., searching and tracking), two distinctive deployment models are proposed based on maximum coverage area and maximum target detection probability in the attack direction respectively. The latter one is usually ignored in the previous literature.For uncovering the optimal deployment of the sensor network, the particle swarm optimization(PSO) algorithm is improved using the proposed weights determination scheme, in which the linear decreasing, the pooling strategy and the cloud theory are combined for weights updating. Experimental results illustrate the effectiveness of the proposed method.