The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
Nowadays,natural rubber(NR)is an indispensable material for industrial production and peoples’daily utilization.The root of Taraxacum kok-saghyz(TKS)contains a large amount of NR,which is potentially to be an alterna...Nowadays,natural rubber(NR)is an indispensable material for industrial production and peoples’daily utilization.The root of Taraxacum kok-saghyz(TKS)contains a large amount of NR,which is potentially to be an alternative rubber source of conventional Hevea brasiliensis(HB).In order to find a convenient,fast and green method for qualitative and quantitative analysis of NR in TKS,a pyrolysis gas chromatography-mass spectrometric(Py-GCMS)method was developed accordingly.The results indicated that the main products of TKS rubber after pyrolysis were isoprene and limonene,respectively,and the limit of detection(LOD)of TKS rubber was 2.603 mg/g.The ratios of NR mass fractions in TKSs by Py-GC-MS ranged from 1.20%±0.20%to 8.61%±0.28%.The developed method has been used for determination of actual TKS samples and can be further applied to the field test for rapid breeding and large-scale cultivation of TKS thereof.展开更多
The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is prese...The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present.A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite.The effect of filler loading(2 wt%-10 wt%) on morphology,structure,magnetic properties,thermal stability and dynamic mechanical properties of the composites were investigated.It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites.The composites’ magnetic properties are directly dependent on the filler concentration.The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability.The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene.Hence,the polymorphism and crystallinity of the matrix varied as the filler loading increased,affecting the dynamic mechanical properties.It was found that 8 wt% NiZn nanocomposite exhibits highest E’ and tanδ,indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.展开更多
No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model fo...No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model for describing the girth growth of young rubber trees based on an incomplete set of young age measurements. Monthly data for girth of immature trees (age 2 to 12 yearsi from two locations were sub- jected to modelling. Re-parameterized, unconstrained and constrained growth functions,of Richards (RM), Gompertz (GM) and the monomo- lecular 'model ^(MM) were fitted to data. Duration of growth was the firsf constraint introduced. In the stagel We attempted a population aver- age (PA) model to capture the trend in growth. The best PA model was fitted as a subject specific (SS) model. We used appropriate error vari- ance-covariance structure to account for correlation due to repeated measurements over time. Unconstrainecl functions underestimated the asymptotic maximum that did not reflective carrying capacity of the locations. Underestimafions were attributed to the partial set' of meas- urements made during the early growth phase of the trees. MM proved superior to RM and GM. In the randomcoefficient models, both Gf and Go appeared to be influenced by tree level effects. Inclusion of diagonal definite positive matrix removed the correlation between random effects. The results were similar at both locations. In the overall assessment MM appeared as the candidate model for studying the girth-age relationships in Hevea trees. Based on the fitted model we conclude that, in Hevea trees, growth rate is maintained at maximum value at to, then decreases until the final state at dG/dt 〉 0, resulting in yield curve with no period of accelerating growth. One physiological explanation is that photosynthetic activity in Hevea trees decreases as girth increases and constructive metabolism is larger than destructive metabolism.展开更多
Taraxacum kok-saghyz(TKS)is rich in natural rubber(NR),a natural organic macromolecular compound composed of cis-1,4-polyisoprene,and may become the second NR-bearing plant for biochemical engineering development.In t...Taraxacum kok-saghyz(TKS)is rich in natural rubber(NR),a natural organic macromolecular compound composed of cis-1,4-polyisoprene,and may become the second NR-bearing plant for biochemical engineering development.In this paper,a rapid and quantitative ultra-high performance liquid chromatography tandem mass spectrometry(UHPLCMS/MS)method was established for determination of macromolecular biosynthesis substrate(dimethylallyl pyrophosphate,DMAPP)and initiator(farnesyl pyrophosphate,FPP)contained in TKS.A Kromasil C18 chromatographic column was used for separation,and the multi-reaction monitoring mode(MRM)of triple quadrupole mass spectrometry was used for detection.Quantification was performed by external calibration method.The results showed that the limit of detection(LOD)and the limit of quantitation(LOQ)of DMAPP were 2.42μg/L and 7.26μg/L,respectively,and the LOQ and the LOD of FPP were 1.02μg/L and 3.05μg/L,respectively.At a concentration of 1—1000μg/L,both analytes had good determination coefficients(>0.999)of calibration curve.The recoveries of DMAPP and FPP were between 99.0%and 117.1%.In real samples detection,the contents of DMAPP and FPP in TKS samples were between 23.32—82.77μg/L and 12.03—85.67μg/L,respectively.Thus,this approach is a reliable method to quantify DMAPP and FPP in TKS.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
基金This work was supported by the National Natural Science Foundation of China(No.51673012)National Key Research and Development Plan Fund(No.2017YFB0306901,2016YFF0203703-03)the Beijing Technology and Business University Youth Scholar Funds(No.PXM2019_014213_000007).
文摘Nowadays,natural rubber(NR)is an indispensable material for industrial production and peoples’daily utilization.The root of Taraxacum kok-saghyz(TKS)contains a large amount of NR,which is potentially to be an alternative rubber source of conventional Hevea brasiliensis(HB).In order to find a convenient,fast and green method for qualitative and quantitative analysis of NR in TKS,a pyrolysis gas chromatography-mass spectrometric(Py-GCMS)method was developed accordingly.The results indicated that the main products of TKS rubber after pyrolysis were isoprene and limonene,respectively,and the limit of detection(LOD)of TKS rubber was 2.603 mg/g.The ratios of NR mass fractions in TKSs by Py-GC-MS ranged from 1.20%±0.20%to 8.61%±0.28%.The developed method has been used for determination of actual TKS samples and can be further applied to the field test for rapid breeding and large-scale cultivation of TKS thereof.
基金the support from the National Science Fund(NSF)MOSTI+1 种基金UKMUCSI
文摘The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present.A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite.The effect of filler loading(2 wt%-10 wt%) on morphology,structure,magnetic properties,thermal stability and dynamic mechanical properties of the composites were investigated.It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites.The composites’ magnetic properties are directly dependent on the filler concentration.The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability.The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene.Hence,the polymorphism and crystallinity of the matrix varied as the filler loading increased,affecting the dynamic mechanical properties.It was found that 8 wt% NiZn nanocomposite exhibits highest E’ and tanδ,indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.
文摘No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model for describing the girth growth of young rubber trees based on an incomplete set of young age measurements. Monthly data for girth of immature trees (age 2 to 12 yearsi from two locations were sub- jected to modelling. Re-parameterized, unconstrained and constrained growth functions,of Richards (RM), Gompertz (GM) and the monomo- lecular 'model ^(MM) were fitted to data. Duration of growth was the firsf constraint introduced. In the stagel We attempted a population aver- age (PA) model to capture the trend in growth. The best PA model was fitted as a subject specific (SS) model. We used appropriate error vari- ance-covariance structure to account for correlation due to repeated measurements over time. Unconstrainecl functions underestimated the asymptotic maximum that did not reflective carrying capacity of the locations. Underestimafions were attributed to the partial set' of meas- urements made during the early growth phase of the trees. MM proved superior to RM and GM. In the randomcoefficient models, both Gf and Go appeared to be influenced by tree level effects. Inclusion of diagonal definite positive matrix removed the correlation between random effects. The results were similar at both locations. In the overall assessment MM appeared as the candidate model for studying the girth-age relationships in Hevea trees. Based on the fitted model we conclude that, in Hevea trees, growth rate is maintained at maximum value at to, then decreases until the final state at dG/dt 〉 0, resulting in yield curve with no period of accelerating growth. One physiological explanation is that photosynthetic activity in Hevea trees decreases as girth increases and constructive metabolism is larger than destructive metabolism.
基金the supports of the National Key Research and Development of BioBased Rubber(2017YFB0306900&2017YFB0306901)the National Natural Science Foundation of China(51673012)+1 种基金the Fundamental Research Funds for the Central Universities(PYBZ1828)the Beijing Technology and Business Universtiy Youth Scholoars Funds(PXM2019014213000007)。
文摘Taraxacum kok-saghyz(TKS)is rich in natural rubber(NR),a natural organic macromolecular compound composed of cis-1,4-polyisoprene,and may become the second NR-bearing plant for biochemical engineering development.In this paper,a rapid and quantitative ultra-high performance liquid chromatography tandem mass spectrometry(UHPLCMS/MS)method was established for determination of macromolecular biosynthesis substrate(dimethylallyl pyrophosphate,DMAPP)and initiator(farnesyl pyrophosphate,FPP)contained in TKS.A Kromasil C18 chromatographic column was used for separation,and the multi-reaction monitoring mode(MRM)of triple quadrupole mass spectrometry was used for detection.Quantification was performed by external calibration method.The results showed that the limit of detection(LOD)and the limit of quantitation(LOQ)of DMAPP were 2.42μg/L and 7.26μg/L,respectively,and the LOQ and the LOD of FPP were 1.02μg/L and 3.05μg/L,respectively.At a concentration of 1—1000μg/L,both analytes had good determination coefficients(>0.999)of calibration curve.The recoveries of DMAPP and FPP were between 99.0%and 117.1%.In real samples detection,the contents of DMAPP and FPP in TKS samples were between 23.32—82.77μg/L and 12.03—85.67μg/L,respectively.Thus,this approach is a reliable method to quantify DMAPP and FPP in TKS.