By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in m...By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in muffle furnace in the expansion of 10 s under 800 ℃ and got nanosized TiO2/expanded graphite. Synthesized that with CoFe2O4 by chemical coprecipitation method finally prepared magnetic nanosized photocatalyst TiO2/expanded graphite. Magnetic nanosized TiO2/expanded graphite was studied on the photodegradation performance of methyl orange solution and the magnetic recovery after the degradation of methyl orange solution. The experiment result showed that in 50 mL 25 mg/L methyl orange solution joined 120 mg loading 50% TiO2 of the expanded graphite, exposed to ultraviolet irradiation for 1 h, the methyl orange decolorization ratio was 90%. When the load of CoFe2O4 in nanosized TiO2/expanded graphite reached 40%, its magnetic recovery efficiency reached 94.3%.展开更多
Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the...Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
文摘By using hydrothermal synthesis method, successively adding tetrabutyl titanate and expandable flake graphite in 40 mL 0.95% NH4Cl solution prepared the nano TiO2/expandable flake graphite, which was then settled in muffle furnace in the expansion of 10 s under 800 ℃ and got nanosized TiO2/expanded graphite. Synthesized that with CoFe2O4 by chemical coprecipitation method finally prepared magnetic nanosized photocatalyst TiO2/expanded graphite. Magnetic nanosized TiO2/expanded graphite was studied on the photodegradation performance of methyl orange solution and the magnetic recovery after the degradation of methyl orange solution. The experiment result showed that in 50 mL 25 mg/L methyl orange solution joined 120 mg loading 50% TiO2 of the expanded graphite, exposed to ultraviolet irradiation for 1 h, the methyl orange decolorization ratio was 90%. When the load of CoFe2O4 in nanosized TiO2/expanded graphite reached 40%, its magnetic recovery efficiency reached 94.3%.
基金Project(22102218)supported by the National Natural Science Foundation of ChinaProject(2022RC1110)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2022QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.