期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
1
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy nanocomposites Mechanical properties Thermal properties Mechanical stirrer Sonication
在线阅读 下载PDF
Rapid removal of Cr(VI)from aqueous solution by novel sepiolite/Fe_(3)O_(4)/nZVI nanocomposite:Material characterizations,enhanced performance in Cr(VI)removal and mechanism
2
作者 HOU Kai HUANG Li +8 位作者 CHEN Wei LI Xue-lian HE Xi LIU Ai-fang DU Juan ZHAO Yue-jie YAO Shun WEI Yu-han FENG Guo-rui 《Journal of Central South University》 2025年第6期2071-2086,共16页
The novel magnetic sepiolite/Fe_(3)O_(4)/zero-valent iron(nZVI)nanocomposite(nZVI@SepH-Mag)was prepared and used to achieve the removal of Cr(VI)in this work.The nZVI@SepH-Mag composites were characterized by XRD,FTIR... The novel magnetic sepiolite/Fe_(3)O_(4)/zero-valent iron(nZVI)nanocomposite(nZVI@SepH-Mag)was prepared and used to achieve the removal of Cr(VI)in this work.The nZVI@SepH-Mag composites were characterized by XRD,FTIR,BET,SEM and TEM.The characterization results indicated that the structure of the composite consisted of small nanoscale nZVI and magnetite(Mag)particles uniformly anchoring on the surface of acid-activated sepiolite(SepH).Batch experiments were used to analyze the effects of main factors on Cr(VI)removal.A 100%removal efficiency in 60 min and enhanced reaction ratio were reached by the composite comparing other existing materials.The kinetic of the adsorption and possible Cr(VI)removal mechanism of the hybrids were also evaluated and proposed.Based on the removal products identified by Raman,XRD and XPS,a reduction mechanism was proposed.The results indicated that the SepH and Mag can inhibit the agglomeration and enhance the dispersibility of nZVI,and Mag and nZVI displayed good synergetic effects. 展开更多
关键词 magnetic adsorbent materials nanocomposites CR(VI) adsorption adsorption mechanism
在线阅读 下载PDF
Mechanical behavior and failure mechanism of polyurea nanocomposites under quasi-static and dynamic compressive loading 被引量:10
3
作者 Qiang Liu Peng-wan Chen +4 位作者 Yan-song Guo Jian-jun Su Lu Han Ali Arab Jian-fei Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期495-504,共10页
Polyurea is an elastomeric material that can be applied to enhance the protection ability of structures under blast and impact loading.In order to study the compressive mechanical properties of SiC/polyurea nanocompos... Polyurea is an elastomeric material that can be applied to enhance the protection ability of structures under blast and impact loading.In order to study the compressive mechanical properties of SiC/polyurea nanocomposites under quasi-static and dynamic loading,a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus were used respectively.The stress-strain curves were obtained on polyurea and its composites at strain rates of 0.001e8000 s1.The results of the experiment suggested that increase in the strain rates led to the rise of the flow stress,compressive strength,strain rate sensitivity and strain energy.This indicates that all of the presented materials were dependent on strain rate.Moreover,these mechanical characters were enhanced by incorporating a small amount of SiC into polyurea matrix.The relation between yield stress and strain rates were established using the power law functions.Finally,in order to investigate the fracture surfaces and inside information of failed specimens,scanning electron microscopy(SEM)and micro X-ray computed tomography(micro-CT)were used respectively.Multiple voids,crazes,micro-cracks and cracking were observed in fracture surfaces.On the other hand,the cracking propagation was found in the micro-CT slice images.It is essential to understand the deformation and failure mechanisms in all the polyurea materials. 展开更多
关键词 Polyurea nanocomposites Mechanical properties Strain rate MICRO-CT FAILURE
在线阅读 下载PDF
Effect of TiC nanoparticle on friction and wear properties of TiC/AA2219 nanocomposites and its strengthening mechanism 被引量:7
4
作者 YANG Yi-long ZHANG Yun +2 位作者 ZHANG Hao-ming LIU Xu-he LI Xiao-qian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期767-779,共13页
TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were stu... TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive. 展开更多
关键词 TiC/AA2219 nanocomposite TiC nanoparticle wear properties HARDNESS wear mechanism
在线阅读 下载PDF
Absorption performance of DMSA modified Fe_3O_4@SiO_2 core/shell magnetic nanocomposite for Pb^(2+) removal 被引量:8
5
作者 TIAN Qing-hua WANG Xiao-yang +1 位作者 MAO Fang-fang GUO Xue-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期709-718,共10页
The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef... The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature. 展开更多
关键词 lead removal ADSORPTION Fe3O4@SiO2 core/shell structure DMSA modification magnetic nanocomposite
在线阅读 下载PDF
Preparation and property of CL-20/BAMO-THF energetic nanocomposites 被引量:6
6
作者 Teng Chen Yan Zhang +6 位作者 Shuang-feng Guo Liu-ming Zhao Wei Chen Ga-zi Hao Lei Xiao Xiang Ke Wei Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期306-312,共7页
A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8,10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane(CL-20) with 3, 3-Bis(azidomethyl) oxetanetetrahydrofuran c... A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8,10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane(CL-20) with 3, 3-Bis(azidomethyl) oxetanetetrahydrofuran copolymer(BAMO-THF) as energetic gel matrix. Scanning electron microscopy(SEM),X-ray diffraction(XRD), Raman, Fourier-transform infrared spectroscopy(FT-IR) and differential thermal analyser(DTA) were utilized to characterize the structure and property of the resultant energetic nanocomposites. Compared with raw CL-20, the average particle sizes of CL-20 in CL-20/BAMO-THF energetic nanocomposites were decreased to nano scale and the morphologies of CL-20 were also changed from prismatic to spherical. FT-IR detection revealed that CL-20 particles were recrystallized in BAMO-THF gel matrix during the freezing-drying process. The thermal decomposition behaviors of the energetic nanocomposites were investigated as well. The thermolysis process of CL-20/BAMO-THF nanocomposites was enhanced and the activation energy was lower compared with that of raw CL-20,indicating that CL-20/BAMO-THF nanocomposites showed high thermolysis activity. The impact sensitivity tests indicated that CL-20/BAMO-THF energetic nanocomposites presented low sensitivity performance. 展开更多
关键词 CL-20/BAMO-THF nanocompositeS KINETIC THERMODYNAMIC Impact sensitivity
在线阅读 下载PDF
Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices 被引量:4
7
作者 HU Hai-long 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2857-2872,共16页
Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol... Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices. 展开更多
关键词 nanocomposite dielectrics electrocaloric effect electrocaloric strength flexible solid-state cooling devices
在线阅读 下载PDF
Flame Retardant and Pyrolytic Behaviors of Polyamide 6/Montmorillonite Nanocomposite 被引量:2
8
作者 刘治国 欧育湘 吴俊浩 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期162-168,共7页
Na +-montmorillonite(Na +-MMT) was converted to organic montmorillonite(OMMT) using modifier which was synthesized at authors’ laboratory. PA6/OMMT nanocomposite was prepared via in situ intercalative polymerization.... Na +-montmorillonite(Na +-MMT) was converted to organic montmorillonite(OMMT) using modifier which was synthesized at authors’ laboratory. PA6/OMMT nanocomposite was prepared via in situ intercalative polymerization. The limiting oxygen index (LOI), UL 94V flame retardancy and thermal stability of PA6/OMMT using thermal gravity analysis (TGA) were measured. The Fourier transform infrared (FTIR) technique was used to analyze the pyrolytic residuum and the cone calorimeter (CONE) was applied to determine a number of combustion parameters which were closely related to fire safety, including heat release rate, mass loss rate, effective combustion heat, total heat release, specific extinction area and the time of ignition. In addition, the elemental composition of the surface pyrolytic residuum and the corresponding X-ray photoelectron spectroscopy (XPS) data were obtained, and the morphology of the residuum from CONE measurement was examined by scanning electron microscope (SEM). 展开更多
关键词 POLYAMIDE 6 MONTMORILLONITE nanocomposite in SITU intercalative POLYMERIZATION flame retardancy PYROLYSIS
在线阅读 下载PDF
Structures and magnetic properties of nanocomposite CoFe_2O_4-BaTiO_3 fibers by organic gel-thermal decomposition process 被引量:2
9
作者 周智 沈湘黔 +1 位作者 宋福展 闵春英 《Journal of Central South University》 SCIE EI CAS 2010年第6期1172-1176,共5页
The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from... The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites. 展开更多
关键词 nanocomposite CeFe2O4 BATIO3 fiber organic gel-thermal decomposition process magnetic property
在线阅读 下载PDF
Light weight HTPB-clay nanocomposites (HCN) with enhanced ablation performance as inhibition materials for composite propellant 被引量:2
10
作者 Kavita Ghosh L.V.Gaikwad +4 位作者 R.K.Kalal P.A.Kulkarni Arvind Kumar Shaibal Banerjee Manoj Gupta 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期559-570,共12页
In the present study,organically modified Montmorillonite clay with polar moiety,the Cloisite 30B,is used for preparation of Hydroxyl terminated polybutadiene(HTPB)-clay nanocomposites(HCN)by dispersion of nanoclay in... In the present study,organically modified Montmorillonite clay with polar moiety,the Cloisite 30B,is used for preparation of Hydroxyl terminated polybutadiene(HTPB)-clay nanocomposites(HCN)by dispersion of nanoclay in polymer matrix under high shear mixing.The nanocomposites thus prepared are evaluated in composite propellants as inhibitor material for their functional utility.Several inhibition formulations containing 5 wt%-15 wt%of nanoclay,with or without the conventional filler Sb2O3,were prepared.All these formulations were evaluated for their physical,mechanical,thermal,and ablative properties.Ablation rate and density of the compositions containing Cloisite 30B is around 23%and 5%lower respectively in comparison of the base composition.Strain capability of these compositions is twofold higher than that of base composition.These compositions have also been evaluated for their smoke generation tendency by measuring infra red(IR)attenuation in the wavelength range 1.3 mm e5.6 mm and 8 mme13 mm and thereby compared with the base composition.The corresponding results confirmed that the compositions containing Cloisite 30B as filler have much lower IR attenuation than compositions with conventional filler,Sb2O3.Replacement of 5%Sb2O3 by nanoclay showed 8%reduction in IR attenuation rate which further reduced to 16%on replacement of 15%of Sb2O3.Interfacial bonding of HCN based inhibitors is also comparable or even better than conventional inhibitors.Precisely,the nanoclay composites with Cloisite 30B as filler exhibit all desirable properties of an inhibitor. 展开更多
关键词 nanocomposite INHIBITOR Composite propellant Ablation
在线阅读 下载PDF
High efficient removal and mineralization of Cr(VI)from water by functionalized magnetic fungus nanocomposites 被引量:3
11
作者 CHEN Run-hua CHENG Yu-ying +3 位作者 WANG Ping LIU Zhi-ming WANG Yu-guang WANG Yang-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1503-1514,共12页
A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in... A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater. 展开更多
关键词 wastewater CR(VI) fungus nanocomposites BIOMINERALIZATION
在线阅读 下载PDF
Preparation, optical properties and cell staining of water soluble amine-terminated PAMAM G2.0-Au nanocomposites 被引量:3
12
作者 夏金兰 傅金殿 +1 位作者 聂珍媛 申丽 《Journal of Central South University of Technology》 EI 2005年第6期641-646,共6页
The solution chemical and optical characteristics of formation of amine-terminated polyamidoamine dendrimer G2.0(NH2-PAMAM G2.0)-Au nanocomposites in the aqueous solution of NH2-PAMAM G2.0 at various mole ratios of... The solution chemical and optical characteristics of formation of amine-terminated polyamidoamine dendrimer G2.0(NH2-PAMAM G2.0)-Au nanocomposites in the aqueous solution of NH2-PAMAM G2.0 at various mole ratios of Au(Ⅲ) to NH2-PAMAM G2.0 were studied by both UV-visible spectrometry and fluorospectrometry. The NH2-PAMAM G2.0-Au nanocomposites, with a type of structure in which one Au nanoparticle is surrounded by several NH2-PAMAM G2.0 dendrimers, emit strong bluish violet fluorescence, and are uniform, water soluble and biocompatible as well as very stable in frozen conditions. The size of gold nanoparticles in the nanocomposites is about 2.5 nm and decreases with the increase of NH2-PAMAM G2.0 concentration. The NH2-PAMAM G2.0 plays an important role in acting as host or micro-reactor for Au(Ⅲ) before Au(Ⅲ) reduction and acting as dispersant and stabilizer for gold nanoparticles after Au(Ⅲ) reduction. Preliminary experiments of cells staining to human embryonic lung fibroblast cell lines show that the NH2-PAMAM G2.0-Au nanocomposites can be used as optical imaging markers for bioanalyses and medical diagnoses. 展开更多
关键词 polyamidoamine dendrimer nanocompositeS gold nanoparticles optical properties cell staining
在线阅读 下载PDF
New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO_2/multiwalled carbon nanotubes nanocomposite film 被引量:2
13
作者 魏万之 翟秀荣 +2 位作者 曾金祥 高艳萍 龚淑果 《Journal of Central South University of Technology》 EI 2007年第1期73-77,共5页
A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite fil... A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film. In this biosensing thin film, the multiwalled carbon nanotubes can effectively catalyze hydrogen peroxide and nanoporous ZrO2 can enhance the stability of the immobilized enzyme. The resulting biosensor provides a very effective matrix for the immobilization of glucose oxidase and exhibits a wide linear response range from 8 μmol/L to 3 mmol/L with a correlation coefficient of 0.994 for the detection of glucose. And the response time and detection limit of the biosensor are determined to be 6 s and 3.5 μmol/L, respectively. Another attractive characteristic is that the biosensor is inexpensive, stable and reliable. 展开更多
关键词 BIOSENSOR nanocomposite glucose oxidase nanoporous ZrO2 multiwalled carbon nanotubes CHITOSAN
在线阅读 下载PDF
Effect of interaction of dislocations with core-shell nanowires on critical shear stress of nanocomposites 被引量:2
14
作者 方棋洪 刘咏 +1 位作者 李慧中 黄伯云 《Journal of Central South University》 SCIE EI CAS 2010年第3期437-442,共6页
The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT... The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT and NABARRO's model. The influence of interface stresses on the critical shear stress was examined. The result indicates that, if the volume fraction of the core-shell nanowires keeps a constant, an optimal critical shear stress may be obtained when the radius of the nanowire with interface stresses reaches a critical value, which differs from the classical solution without considering the interface stresses under the same external conditions. In addition, the material may be strengthened by the soft nanowires when the interface stresses are considered. There also exist critical values of the elastic modulus and the thickness of surface coating to alter the strengthening effect produced by it. 展开更多
关键词 nanocompositeS dislocations NANOWIRE interface stress critical shear stress
在线阅读 下载PDF
Increasing the toughness while reducing the viscosity of carbon nanotube/ polyether imide/polyether ether ketone nanocomposites 被引量:2
15
作者 SONG Jiu-peng ZHAO Yan +3 位作者 LI Xue-kuan XIONG Shu LI Shuang WANG Kai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期715-728,共14页
Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im... Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites. 展开更多
关键词 nanocompositeS Mechanical properties Rheological properties Microstructural analysis
在线阅读 下载PDF
Effect of cathode composition on microstructure and tribological properties of TiBN nanocomposite multilayer coating synthesized by plasma immersion ion implantation and deposition 被引量:1
16
作者 Lü Wen-quan CAO Yong-zhi +4 位作者 WANG Lang-ping WANG Xiao-feng GU Zhi-wei YAN Yong-da YU Fu-li 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2238-2244,共7页
Nanocomposite multilayer TiBN coatings were prepared on Si(100) and 9Cr18Mo substrates using TiBN composite cathode plasma immersion ion implantation and deposition technique(PIIID). Synthesis of TiBN composite cathod... Nanocomposite multilayer TiBN coatings were prepared on Si(100) and 9Cr18Mo substrates using TiBN composite cathode plasma immersion ion implantation and deposition technique(PIIID). Synthesis of TiBN composite cathodes was conducted by powder metallurgy technology and the content of hexagonal boron nitride(h-BN) was changed from 8% to 40%(mass fraction). The as-deposited coatings were characterized by energy dispersive spectrometer(EDS), grazing incidence X-ray diffraction(GIXRD), Fourier Transform Infrared Spectroscopy(FTIR) and high resolution transmission electron microcopy(HRTEM). EDS results show that the B content of the coatings was varied from 3.71% to 13.84%(molar fraction) when the composition of the h-BN in the composited cathodes was changed from 8 % to 40%(mass fraction). GIXRD results reveal that the TiBN coatings with a B content of 8% has the main diffraction peak of TiN(200),(220) and(311), and these peaks disappear when the B content is increased. FTIR analysis of the multilayer coatings showed the presence of h-BN in all coatings. TEM images reveal that all coatings have the characteristics of self-forming nanocomposite multilayers, where the nanocomposites are composed of face-centered cubic Ti N or h-BN nanocrystalline embedded in amorphous matrix. The tribological tests reveal that the Ti BN coatings exhibit a marked decrease of coefficient at room temperature(~0.25). The improved properties were found to be derived from the comprehensiveness of the self-forming multilayers structure and the h-BN solid lubrication effects in the coatings. 展开更多
关键词 TiBN coatings nanocomposite multilayer plasma IMMERSION ion IMPLANTATION and deposition
在线阅读 下载PDF
Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers 被引量:2
17
作者 Farzad Ebrahimi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期212-225,共14页
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis... The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically. 展开更多
关键词 Vibration Agglomeration effect Multi-scale hybrid nanocomposites Galerkin’s solution Viscous fluid flow
在线阅读 下载PDF
Effects of phase change material(PCM)-based nanocomposite additives on thermal decomposition and burning characteristic of high energy propellants containing RDX 被引量:1
18
作者 En-fa Fu Na Sun Zheng-gang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期557-566,共10页
A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of... A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of high energy propellants.The effect of PCM-based nanocomposites on thermal decomposition of high energy propellants is investigated by TG/DSC-FTIR-MS technology.Due to the delayed protection effect(PCM-based nanocomposites can absorb lots of heat at the range of certain temperature when it undergoes structure change or phase transitions)of PCM-based nanocomposites under the thermal decomposition condition,the thermal stability of high energy propellants modified with PCMbased nanocomposites is improved.At the same time,the concentration of N2,NO2,H2O and CO_(2)is increased during thermal decomposition of high energy propellants whereas NO and CO is decreased.The burning gaseous products and burning characteristic of high energy propellants are studied by the combination of closed bomb test and Fourier transform infrared spectrum.The main burning gaseous products are N2,CO_(2),CO,H2O,CH4,etc.After the high energy propellant modified with PCM-based nanocomposites,the concentration of CH4is increased while CO,CO_(2) and H2O is decreased under the high-pressure burning condition.The progressivity factor of high energy propellants is increased by22.2%compared with the control sample while the maximum pressure is merely decreased 1.25%after the addition of the PCM-based nanocomposite,thus PCM-based nanocomposites can be used to adjust the burning process and improve the burning progressivity of high energy propellants.This study is expected to boost the practical application of PCM-based nanocomposite to the propellant formulation and effectively control the burning characteristic of high energy propellants. 展开更多
关键词 Phase change material Propellants nanocomposite Thermal decomposition BURNING
在线阅读 下载PDF
Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites 被引量:1
19
作者 Mustafa H.Fadhil Saad H.Ammar Marwa F.Abdul Jabbar 《燃料化学学报》 EI CAS CSCD 北大核心 2019年第9期1075-1082,共8页
Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the prese... Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the present work, a simple catalytic oxidative desulfurization (CODS) system for Iraqi gasoil fraction has been successfully developed using CuO-ZnO nanocomposites as catalysts, and H 2O 2 as oxidant under microwave irradiation. The main reaction parameters influencing sulfur conversion including microwave power, irradiation time, catalyst dosage and H 2O 2 to gasoil volume ratio have been investigated. The CuO-ZnO nanocomposites was synthesized with different weight ratios and characterized by XRD, FE-SEM, AFM and BET surface area methods. The results reveal that, high sulfur conversion (93%) has been achieved under suitable conditions of microwave CODS as follows: microwave power of 540 W, irradiation time of 15 min, catalyst dosage of 8 g/L (0.4 g), and H 2O 2 ∶gasoil volume ratio of 0.3. The catalyst reusability shows that the synthesized catalyst can be reused five times without an important loss in its activity. 展开更多
关键词 microwave OXIDATIVE DESULFURIZATION nanocompositeS catalyst gasoil
在线阅读 下载PDF
Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells 被引量:1
20
作者 Farzad Ebrahimi Pendar Hafezi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期226-233,共8页
In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanic... In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored. 展开更多
关键词 BUCKLING Graphene oxide powder(GOP) nanocomposite First-order shell theory
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部