ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The m...ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.展开更多
Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTI...Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.展开更多
文摘ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
基金Project(200501) supported by the "985" Program of China
文摘Magnetic starch particles (MSPs) were synthesized in water-in-oil mieroemulsion at room temperature. MSPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), zeta potential system, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The average diameter of the MSPs was 220 nm, dispersed with well-proportioned size and magnetic resonance, the saturation magnetization was 3.64 A.mR/kg. MSP was coated with poly-L-lysine (PLL), and then the surface of PLL-MSP was combined with fluorescein isothiocynate (FITC). Results show that fluorescent/magnetic starch particles (FMSPs) are of stable photo-bleaching capability compared with free FITC, with low bio-toxicity and certain function of magnetic separation. It is expected that FMSPs are bifimctional nano-materials including fluorescence labelling and magnetic separation.