期刊文献+
共找到14,047篇文章
< 1 2 250 >
每页显示 20 50 100
Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries 被引量:5
1
作者 ZHANG Yue OUYANG Yan +4 位作者 LIU Li XIA Jing NIE Su LIU Wen WANG Xian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1510-1520,共11页
Na0.44MnO2 nanorods have been prepared by a hydrothermal method.The experimental parameters have been systematically investigated and optimized.The results show that Na0.44MnO2 nanorods obtained via the hydrothermal t... Na0.44MnO2 nanorods have been prepared by a hydrothermal method.The experimental parameters have been systematically investigated and optimized.The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200℃for 16 h show the best electrochemical properties,which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0-4.0 V.To further improve their electrochemical properties,a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite.The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g.After 100 cycles,the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%,which is much higher than that of pristine Na0.44MnO2 nanorods(74.7%)at the same condition.What is more,when the current density reaches 500 and 1000 mA/g,the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g,respectively,indicating outstanding rate capability. 展开更多
关键词 manganese-based compounds hydrothermal method sodium-ion batteries composite materials
在线阅读 下载PDF
A review on machinability of carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP)composite materials 被引量:52
2
作者 Meltem Altin Karatas Hasan Gokkaya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期318-326,共9页
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s... Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models. 展开更多
关键词 composite materialS Fiber reinforced polymer composite materialS CFRP GFRP Machining Wear Surface damage
在线阅读 下载PDF
A new clay-cement composite grouting material for tunnelling in underwater karst area 被引量:11
3
作者 ZHANG Cong YANG Jun-sheng +4 位作者 FU Jin-yang OU Xue-feng XIE Yi-peng DAI Yong LEI Jin-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1863-1873,共11页
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for... A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution. 展开更多
关键词 tunnel karst UNDERWATER new grouting material clay-cement composite
在线阅读 下载PDF
Preparation and electrochemical characterization of C/PANI composite electrode materials 被引量:6
4
作者 赖延清 李晶 +3 位作者 李劼 卢海 张治安 刘业翔 《Journal of Central South University of Technology》 EI 2006年第4期353-359,共7页
Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on th... Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance. 展开更多
关键词 SUPERCAPACITOR POLYANILINE composite electrode materials electrochemical properties
在线阅读 下载PDF
Coupling dynamic equations of motor-driven elastic linkage mechanism with links fabricated from three-dimensional braided composite materials 被引量:2
5
作者 蔡敢为 王湘 +3 位作者 王汝贵 李兆军 张晓斌 常平平 《Journal of Central South University of Technology》 2005年第2期171-175,共5页
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag... A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism. 展开更多
关键词 elastic mechanism finite element composite material electromechanical coupling dynamic analysis
在线阅读 下载PDF
Effect of baking processes on properties of TiB_2/C composite cathode material 被引量:1
6
作者 吕晓军 李劼 +1 位作者 赖延清 方钊 《Journal of Central South University》 SCIE EI CAS 2009年第3期429-433,共5页
Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of... Pitch and TiB2/C green composite cathode material were respectively analyzed with simultaneous DSC-TGA, and effects of three baking processes of TiB2/C composite cathode material, i.e. K25, K5 and M5, on properties of TiB2/C composite cathode material were investigated. The results show that thermogravimetrie behavior of pitch and TiB2/C green composite cathode is similar, and appears the largest mass loss rate in the temperature range from 200 to 600 ℃. The bulk density variation of sample K5 before and after baking is the largest (11.9%), that of sample K25 is the second, and that of sample M5 is the smallest (6.7%). The crushing strength of sample M5 is the biggest (51.2 MPa), that of sample K2.5 is the next, and that of sample K5 is the smallest (32.8 MPa). But, the orders of the electrical resistivity and electrolysis expansion of samples are just opposite with the order of crushing strength. The heating rate has a great impact on the microstructure of sample. The faster the heating rate is, the bigger the pore size and porosity of sample are. Compared with the heating rate between 200 and 600℃ of samples K25 and K5, that of sample M5 is slower and suitable for baking process of TiB2/C composite cathode material. 展开更多
关键词 aluminum electrolysis TiB2/C composite cathode material baking process
在线阅读 下载PDF
Settlement of composite foundation with discrete material pile considering modulus change
7
作者 曹文贵 刘海涛 +1 位作者 李翔 张永杰 《Journal of Central South University》 SCIE EI CAS 2008年第S2期8-14,共7页
Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two pa... Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two parts, an expanding part and an un-expanding part. Then, in view of the differences of deformation properties between the expanding part and the un-expanding part, the relationships between the pile modulus and the applied load in these two parts were respectively developed. Thirdly, by introducing the above relationships into settlement analysis, a new method to calculate displacement of composite foundation with discrete material pile was proposed by using the multi-stage loading theory and the layer-wise summation approach. This method is effective not only for accounting for the effect of variations of pores on deformation modulus of the pile body in different depths, but also for describing the characteristics of different deformation mechanisms of the pile body with varying depth. Finally, the proposed method was used to a practical composite foundation problem, whose theoretical results were presented and compared to those of other methods. The rationality and feasibility of this method are identified through comparative analysis. 展开更多
关键词 DISCRETE material PILE composite FOUNDATION SETTLEMENT calculation pores DEFORMATION MODULUS
在线阅读 下载PDF
Defence technology: Special issue on “composite materials in defence technology”
8
作者 S.M.Sapuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期267-267,共1页
In recent years,composite materials have been used in many industries such as in automotive,aerospace,telecommunication,marine,furniture,construction and defence.Body amour and tank spall liners are examples of the us... In recent years,composite materials have been used in many industries such as in automotive,aerospace,telecommunication,marine,furniture,construction and defence.Body amour and tank spall liners are examples of the use of composites in defence industry.Composites have many different attributes that are unique over conventional materials like metals,polymers and ceramics.Those attributes include light weight,high specific stiffness and strength properties,corrosion resistance,aesthetically pleasing and ease of fabrication.Advanced composites such as aramid and carbon fibre polymer composites,metal matrix composites,ceramic matrix composites,and nanocomposites are among material contenders in defence technology applications requiring excellent structural integrity.Composites are also used in some non-structural applications in selected components utilising the low cost advantage of glass fibre and natural fibre composites. 展开更多
关键词 composite materials LIGHT WEIGHT Advanced compositeS
在线阅读 下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
9
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material composites materials Damping property STIFFNESS Fatigue characteristics
在线阅读 下载PDF
Fatigue damage modeling of TB-EPUDC-015 composite materials
10
作者 LIN Wen-qiang TANG Xiao-wei 《材料与冶金学报》 CAS 2007年第1期55-59,共5页
关键词 复合材料 寿命预期 机械疲劳 模型
在线阅读 下载PDF
Influence of volume percentage of NanoTiB2 particles on tribological&mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process 被引量:1
11
作者 V.Kishan Aruri Devaraju K.Prasanna Lakshmi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期16-21,共6页
The aim of present study is to analyze the influence of volume percentage(vol.%) of nano-sized particles(TiB_2: average size is 35 nm) on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surfac... The aim of present study is to analyze the influence of volume percentage(vol.%) of nano-sized particles(TiB_2: average size is 35 nm) on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process(FSP). The microstructure of the fabricated surface nanocomposites is examined using optical microscopy(OM) and scanning electron microscope(SEM) for distribution of TiB_2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 m m along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB_2 particles, the microhardness is increased up to132 Hv and it is greater than as-received Al alloy's microhardness(104 Hv). It is also observed that at 4volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology. 展开更多
关键词 Friction stir process Al alloy Surface nano composites Tensile TRIBOLOGY
在线阅读 下载PDF
Tuning the particle size and morphology of high energetic material nanocrystals 被引量:7
12
作者 Raj KUMAR Prem Felix SIRIL Pramod SONI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期382-389,共8页
Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solven... Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solvent—antisolvent interaction(SAI) method at 70 ℃.The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically.Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy(FE-SEM) imaging.X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms,i.e.a and P,respectively.Thermogravimetric analysis coupled with differential scanning calorimetry(TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs.HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions.The mean particle size also varied considerably with the use of different solvents. 展开更多
关键词 平均粒径 高含能材料 形貌 纳米晶体 场发射扫描电子显微镜 差示扫描量热法 纳米颗粒 纳米粒子
在线阅读 下载PDF
Recent progress in developing ballistic and anti-impact materials:Nanotechnology and main approaches 被引量:1
13
作者 Shuangyan Wu Partha Sikdar Gajanan S.Bhat 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期33-61,共29页
With increasing international and civilian conflicts,developing advanced body armor has become an emerging field in academia and industry.Nanotechnology,by means of,incorporating nanomaterials,is considered a highly e... With increasing international and civilian conflicts,developing advanced body armor has become an emerging field in academia and industry.Nanotechnology,by means of,incorporating nanomaterials,is considered a highly effective technique to achieve this goal.It has been widely studied in defense applications owing to high strength-to-weight ratios and excellent energy absorption capability of nanomaterials.Hence,this review encompasses the latest application of nanotechnology involving nanomaterials and nanocomposites in ballistic and anti-impact fields.Additionally,this paper outlines fiber materials utilized,and alternative approaches adopted to develop robust non-metal bullet-proof materials.These approaches include shear thickening fluids(STFs)incorporation,sandwich structures,polymer matrix composites(PMCs),and textile structure optimization.Meanwhile,ballistic-related performances of various materials developed using single or hybrid techniques are collected and compared. 展开更多
关键词 materialS composites IMPACT
在线阅读 下载PDF
Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials
14
作者 Yong-Ji Qina Jing-Quan Yang +5 位作者 Hao Wang Mei-Ling Lian Pei-Pei Jia Jun Luo Xi-Jun Liu Jun-Feng Liu 《电化学(中英文)》 北大核心 2025年第7期18-26,共9页
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and... In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance. 展开更多
关键词 Metal-organic framework Iron oxide Graphene oxide composite material SUPERCAPACITOR
在线阅读 下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
15
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry STRUCTURE SIZE micro/nano-energetic materials construction technology PROPERTY
在线阅读 下载PDF
Sustainable large-format additive manufacturing of composite molds with 45-degree deposition strategies
16
作者 Pablo Castelló-Pedrero Javier Bas-Bolufer +2 位作者 César García-Gascón Juan Antonio García-Manrique Francisco Chinesta 《Defence Technology(防务技术)》 2025年第9期303-317,共15页
Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generato... Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments. 展开更多
关键词 Large format additive manufacturing Recycled material composite materials Glass fiber MOLDS DRONES Wind turbine Racing car
在线阅读 下载PDF
Hydration mechanism and microstructure characteristics of modified magnesium slag alkali-activated coal-fired slag based cementitious materials
17
作者 SUN Wei-ji LIU Lang +4 位作者 ZHAO Yuan-yuan FANG Zhi-yu LYU Yong-zhe XIE Geng SHAO Cheng-cheng 《Journal of Central South University》 2025年第6期2148-2169,共22页
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value... As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling. 展开更多
关键词 coal-fired slag ALKALI-ACTIVATED hydration characteristics pore structure composite cementitious material
在线阅读 下载PDF
Generalized Dual Symmetry Mechanical Performance of Nano Magnetic Composite
18
作者 Li Yong Song Jian Zhang Z.M 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z2期48-53,共6页
Nano magnetic composite is a kind of heterogeneous material. Scientists found the symmetrical and dual symmetrical phenomena in its structure previously and we find the generalized dual symmetry mechanical performance... Nano magnetic composite is a kind of heterogeneous material. Scientists found the symmetrical and dual symmetrical phenomena in its structure previously and we find the generalized dual symmetry mechanical performance in Nano Magnetic Composite and further establish the theory. The applicable nano magnetic composite structure is analyzed thoroughly and systematically. Such phenomena as serration and step dispersing distribution of bending stress and mirror reflection of interlaminar stress are thus found. Therefore, starting from the physical features of materials, Nano Magnetic Composite are analyzed on the basis of the understanding and application of the generalized dual symmetry mechanical performance. In addition, the design parameter is optimized to attain the goal of maximizing the use of materials, which is quite meaningful. 展开更多
关键词 nano magenetic composite DUAL SYMMETRICAL HETEROGENEOUS model
在线阅读 下载PDF
Performance analysis of thermal storage unit with possible nano enhanced phase change material in building cooling applications
19
作者 Solomon G Ravikumar Ravikumar T S +1 位作者 Raj V Antony Aroul Velraj R 《储能科学与技术》 CAS 2013年第2期91-102,共12页
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano... The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid. 展开更多
关键词 thermal storage phase change material nano particle solidification time building cooling doi.3969/j.issn.2095-4239.2013.02.002 CLC number:TK 51 Document code:A Article ID-4239(2013)02-091-12
在线阅读 下载PDF
Design and micro mechanical properties of nano-SiO_2 strengthened composite coatings towards remanufacturing
20
作者 王红美 刘存龙 +1 位作者 史佩京 徐滨士 《Journal of Central South University》 SCIE EI CAS 2005年第S2期190-194,共5页
Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and T... Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings. 展开更多
关键词 REMANUFACTURING nano-composite coating nano-indentation MICRO MECHANICAL property
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部