期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双信号融合的主轴/刀柄结合面刚度退化程度预测
1
作者 吴石 张勇 +1 位作者 王宇鹏 王春风 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1449-1461,共13页
为了预测主轴/刀柄结合面刚度退化程度,提出了一种基于激励和响应信号融合的主轴/刀柄结合面刚度退化程度预测方法。首先进行钛合金矩形工件侧铣实验,采集瞬时铣削力信号和主轴/刀柄结合面附近的响应振动信号,构建反映主轴/刀柄结合面... 为了预测主轴/刀柄结合面刚度退化程度,提出了一种基于激励和响应信号融合的主轴/刀柄结合面刚度退化程度预测方法。首先进行钛合金矩形工件侧铣实验,采集瞬时铣削力信号和主轴/刀柄结合面附近的响应振动信号,构建反映主轴/刀柄结合面刚度退化的数据库。然后根据数据库中瞬时铣削力和振动信号各方向的时域、频域和时频域特征,基于相关性分析优选出瞬时铣削力信号和振动信号的时域均值、频域中心频率、时频域一阶小波包能量3个特征,分别使用低频滤波卷积核和高频滤波卷积核对优选后的特征矩阵进行双通道卷积池化处理,获取深度融合的主轴/刀柄结合面刚度退化程度特征向量。最后以支持向量机模型(SVM)的概率模式转化为朴素贝叶斯分类器(NBC)的条件概率,构建混合分类器模型(NBC-SVM),提高了分类器的分类性能。在主轴/刀柄结合面刚度退化数据库的基础上,基于双通道卷积池化的特征融合方法(CP-FF)和NBC-SVM模型实现了主轴/刀柄结合面刚度退化程度的预测,预测精度达96%。 展开更多
关键词 主轴/刀柄结合面 刚度退化 特征融合 朴素贝叶斯分类器支持向量机模型
在线阅读 下载PDF
基于向量空间模型的过滤不良文本方法 被引量:14
2
作者 李强 李建华 《计算机工程》 CAS CSCD 北大核心 2006年第10期4-5,8,共3页
就向量空间模型文本表示方法以及归一化技术对不良文本过滤性能的影响进行了研究,并基于平衡样本集和不平衡样本集分别进行了试验。试验和结果分析表明,Na?veBayes方法由于采用概率模型进行文本表示,在不平衡样本集上显示了较差的准确度... 就向量空间模型文本表示方法以及归一化技术对不良文本过滤性能的影响进行了研究,并基于平衡样本集和不平衡样本集分别进行了试验。试验和结果分析表明,Na?veBayes方法由于采用概率模型进行文本表示,在不平衡样本集上显示了较差的准确度,而基于向量空间模型进行文本表示的方法,如中心向量法(VSM)、支持向量机(SVM)等在平衡或非平衡样本上取得了较好的准确度,并用于过滤不良文本的文本内容安全监管中。 展开更多
关键词 文本表示 文本归一化 向量空间模型 支持向量机 naive bayes模型
在线阅读 下载PDF
基于字符语言模型的垃圾邮件过滤 被引量:8
3
作者 苏绥 林鸿飞 叶正 《中文信息学报》 CSCD 北大核心 2009年第2期41-47,共7页
基于内容的过滤是当前解决垃圾邮件问题的主流技术之一。该文先简单综述了当前基于内容的垃圾邮件过滤中采用的各种技术,在此基础上提出将基于字符的语言模型应用于垃圾邮件过滤任务中,并通过实验对比了该方法与Na ve Bayes、SVM和基于... 基于内容的过滤是当前解决垃圾邮件问题的主流技术之一。该文先简单综述了当前基于内容的垃圾邮件过滤中采用的各种技术,在此基础上提出将基于字符的语言模型应用于垃圾邮件过滤任务中,并通过实验对比了该方法与Na ve Bayes、SVM和基于词的语言模型方法的性能差异,以及不同n值、不同特征选择方式对过滤结果的影响。实验结果表明,基于字符的语言模型实现简单且具有很高的性能,能较好地满足大规模在线邮件系统的需要,具有很高的实用价值。 展开更多
关键词 计算机应用 中文信息处理 垃圾邮件过滤 语言模型 朴素贝叶斯 支撑向量机 n—Gram
在线阅读 下载PDF
基于机器学习模型的科技论文潜在“精品”识别研究 被引量:7
4
作者 胡泽文 任萍 崔静静 《情报学报》 CSSCI CSCD 北大核心 2023年第2期189-202,共14页
综合运用科技文献特征向量空间和机器学习模型实现海量文献中潜在“精品”的自动识别与推荐,能够提升海量科技文献的科学影响和其科技发展促进作用。设计和实现基于机器学习的科技文献潜在“精品”识别分类器和模型框架,测度出国际高影... 综合运用科技文献特征向量空间和机器学习模型实现海量文献中潜在“精品”的自动识别与推荐,能够提升海量科技文献的科学影响和其科技发展促进作用。设计和实现基于机器学习的科技文献潜在“精品”识别分类器和模型框架,测度出国际高影响力期刊和国内图书情报与档案管理期刊论文的原文及引文特征,运用特征工程构建科技论文特征向量空间;然后分别采用支持向量机和朴素贝叶斯等传统机器学习模型,以及深度置信网络和多层感知机等深度学习模型进行潜在“精品”的自动识别,并基于ROC曲线(receiver operating characteristic curve)和混淆矩阵构建评价模型识别效果的指标体系。研究结果显示:①深度学习模型在潜在“精品”识别方面的效果较差,而传统机器学习模型的识别效果较优,其中随机森林和支持向量机的潜在“精品”识别效果最佳,决策树识别效果次之,朴素贝叶斯识别效果较差且稳定性不足。②影响因子越高的期刊潜在“精品”识别效果越好;无论国际自然科学领域高影响力期刊,还是国内社会科学领域图书情报与档案管理期刊,识别出的“精品”论文全部为被引频次较高的论文且综述论文的占比较低,国内期刊的“精品”论文中仅有1篇为综述论文。③“精品”论文的计量特征值与总体论文样本相比,呈现较大差异,即“精品”论文的首次响应时间较短且拥有基金资助,参考文献数量、关键词数量和被引频次较多,摘要和论文篇幅较长且偏向多作者论文。实证结果表明,机器学习模型能够准确识别科技文献中的潜在“精品”,并提升潜在“精品”识别的自动化程度,为海量文献中潜在“精品”文献的自动识别与传播利用提供理论参考与方法支撑。 展开更多
关键词 机器学习 深度学习 精品文献 特征工程 随机森林 支持向量机 朴素贝叶斯 深度置信网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部