期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
应用n-LSTM的云平台任务CPU负载预测方法 被引量:2
1
作者 曹振 邓莉 +1 位作者 谢同磊 梁晨君 《小型微型计算机系统》 CSCD 北大核心 2024年第1期75-83,共9页
云平台任务的CPU负载预测有助于云平台资源的优化配置,以改善资源利用率.它是有效管理云资源的重要手段.为提高任务CPU负载预测精度,本文主要做了以下工作:1)利用热度图提取用于进行CPU负载预测的资源使用特征;2)设计并实现了一种基于n-... 云平台任务的CPU负载预测有助于云平台资源的优化配置,以改善资源利用率.它是有效管理云资源的重要手段.为提高任务CPU负载预测精度,本文主要做了以下工作:1)利用热度图提取用于进行CPU负载预测的资源使用特征;2)设计并实现了一种基于n-LSTM的云平台任务的CPU负载预测方法DPFE-n-LSTM;3)分别在阿里云平台数据集和Google云平台数据集上进行了实验,结果表明,相对于目前已经提出的CPU负载预测模型BP、LSTM和CNN-LSTM,DPFE-n-LSTM方法具有更好的预测性能. 展开更多
关键词 特征选择 CPU负载 n-lstm 时间序列
在线阅读 下载PDF
基于LSTM和N-gram的ESL文章的语法错误自动纠正方法 被引量:9
2
作者 谭咏梅 杨一枭 +1 位作者 杨林 刘姝雯 《中文信息学报》 CSCD 北大核心 2018年第6期19-27,共9页
针对英语文章语法错误自动纠正(Grammatical Error Correction,GEC)问题中的冠词和介词错误,该文提出一种基于LSTM(Long Short-Term Memory,长短时记忆)的序列标注GEC方法;针对名词单复数错误、动词形式错误和主谓不一致错误,因其混淆... 针对英语文章语法错误自动纠正(Grammatical Error Correction,GEC)问题中的冠词和介词错误,该文提出一种基于LSTM(Long Short-Term Memory,长短时记忆)的序列标注GEC方法;针对名词单复数错误、动词形式错误和主谓不一致错误,因其混淆集为开放集合,该文提出一种基于ESL(English as Second Lauguage)和新闻语料的N-gram投票策略的GEC方法。该文方法在2013年CoNLL的GEC数据上实验的整体F1值为33.87%,超过第一名UIUC的F1值31.20%。其中,冠词错误纠正的F1值为38.05%,超过UIUC冠词错误纠正的F1值33.40%,介词错误的纠正F1为28.89%,超过UIUC的介词错误纠正F1值7.22%。 展开更多
关键词 语法错误自动纠正 LSTM N-gram投票策略 ESL语料
在线阅读 下载PDF
融合Graph state LSTM与注意力机制的跨句多元关系抽取
3
作者 衡红军 姚若男 《计算机应用与软件》 北大核心 2023年第8期214-220,290,共8页
已有的跨句多元关系抽取工作将输入文本表示为集成句内和句间依赖关系的复杂文档图,但图中包含的噪声信息会影响关系抽取的效果。针对这种情况,该文利用Graph state LSTM获得上下文信息,再分别利用词级注意力机制或位置感知的注意力机制... 已有的跨句多元关系抽取工作将输入文本表示为集成句内和句间依赖关系的复杂文档图,但图中包含的噪声信息会影响关系抽取的效果。针对这种情况,该文利用Graph state LSTM获得上下文信息,再分别利用词级注意力机制或位置感知的注意力机制,自动聚焦在对关系抽取起到决定性作用的关键词上,降低噪声信息的影响。并且比较了两种注意力机制对使用Graph state LSTM进行关系抽取的影响。通过在一个重要的精确医学数据集上进行实验,验证了该文所提出模型的有效性。 展开更多
关键词 跨句多元关系抽取 注意力机制 Graph state LSTM
在线阅读 下载PDF
基于新词发现和Lattice-LSTM的中文医疗命名实体识别 被引量:10
4
作者 赵耀全 车超 张强 《计算机应用与软件》 北大核心 2021年第1期161-165,249,共6页
在医疗命名实体识别中,由于存在大量医学专业术语和语料中语言不规范的原因,识别的准确率不高。为了识别未登录的医学术语和应对语言不规范问题,提出一种基于N-grams新词发现的Lattice-LSTM的多粒度命名实体识别模型。在医疗对话语料中... 在医疗命名实体识别中,由于存在大量医学专业术语和语料中语言不规范的原因,识别的准确率不高。为了识别未登录的医学术语和应对语言不规范问题,提出一种基于N-grams新词发现的Lattice-LSTM的多粒度命名实体识别模型。在医疗对话语料中使用N-grams算法提取新词并构造一个医疗相关的词典,通过Lattice-LSTM模型将输入的字符和所有能在词典匹配的单词一起编码,其中门结构能够使模型选择最相关的字符和单词。Lattice-LSTM能够利用发现的新词信息识别未登录的医学术语,从而得到更好的实验识别结果。 展开更多
关键词 医疗命名实体识别 N-GRAMS 新词发现 Lattice-LSTM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部