To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality dat...Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.展开更多
In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effect...In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively. Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.展开更多
Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexi...Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.展开更多
Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloye...Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.展开更多
A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st...A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.展开更多
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
利用超高效液相色谱-四极杆飞行时间质谱仪建立一种狗牯脑、庐山云雾茶和婺源绿茶品质鉴别的非靶向代谢组学分析方法。利用MassHunter Mass Profile对原始数据进行逐步筛选,最终确定220个特征差异化合物,并对其进行主成分分析和聚类分析...利用超高效液相色谱-四极杆飞行时间质谱仪建立一种狗牯脑、庐山云雾茶和婺源绿茶品质鉴别的非靶向代谢组学分析方法。利用MassHunter Mass Profile对原始数据进行逐步筛选,最终确定220个特征差异化合物,并对其进行主成分分析和聚类分析,结果表明3种茶叶具有较大差异。构建偏最小二乘判别分析预测模型,该模型能够对狗牯脑、庐山云雾茶和婺源绿茶品质进行鉴别,准确度达100%。通过一级母离子和二级碎片离子对220种特征差异物进行鉴定,最终鉴定出22种,主要成分为黄酮类、糖苷衍生物和有机酸类等,结合热图分析发现其在3种江西名茶中的含量具有明显差异。本研究对茶叶品质鉴别具有一定指导意义,该方法可广泛用于食品的分析和表征。展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
The influence of three factors, such as volume percentage of reinforcement particles(i.e. Al2O3), tool tilt angle and concave angle of shoulder, on the mechanical properties of Cue Al2O3 surface composites fabricated ...The influence of three factors, such as volume percentage of reinforcement particles(i.e. Al2O3), tool tilt angle and concave angle of shoulder, on the mechanical properties of Cue Al2O3 surface composites fabricated via friction stir processing was studied. Taguchi method was used to optimize these factors for maximizing the mechanical properties of surface composites. The fabricated surface composites were examined by optical microscope for dispersion of reinforcement particles. It was found that Al2O3 particles are uniformly dispersed in the stir zone. The tensile properties of the surface composites increased with the increase in the volume percentage of the Al2O3 reinforcement particles.This is due to the addition of the reinforcement particles which increases the temperature of recrystallization by pinning the grain boundaries of the copper matrix and blocking the movement of the dislocations. The observed mechanical properties are correlated with microstructure and fracture features.展开更多
Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on ...Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on the plan of experiments generated through Taguchi's(L9) technique. Tribometer was used for the wear test and Scanning electron microscope was used to analyse the worn scar of the samples. The results shows that, A356 alloy reinforced with CHp exhibited better dry sliding wear resistance than the unreinforced alloy. Wear rate decreased as the amount of CHp reinforcement increased in the matrix. It was found that, the optimum level of the factors with minimized the wear loss were obtained at: wt%CHp(20%), applied load(10 N), sliding velocity(3 m/s) and sliding distance(2000 m). It can be seen that the wear track of the sample are(D ? 0.81 and L = 42.85 mm) and(D ? 0.54 and L= 27.03 mm) for A356 alloy and composites at optimum condition respectively. The results showed that the addition of cow horn particles as reinforcing materials in A356 alloy composites increased the wear resistance of the composites greatly.展开更多
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金Project (2012ZX07501002-001) supported by the Ministry of Science and Technology of China
文摘Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively. Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.
基金supported by the National Natural Science Foundation of China(6100121161303035+1 种基金61471283)the Fundamental Research Funds for the Central Universities(K5051202016)
文摘Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.
文摘Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.
文摘A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.
文摘利用超高效液相色谱-四极杆飞行时间质谱仪建立一种狗牯脑、庐山云雾茶和婺源绿茶品质鉴别的非靶向代谢组学分析方法。利用MassHunter Mass Profile对原始数据进行逐步筛选,最终确定220个特征差异化合物,并对其进行主成分分析和聚类分析,结果表明3种茶叶具有较大差异。构建偏最小二乘判别分析预测模型,该模型能够对狗牯脑、庐山云雾茶和婺源绿茶品质进行鉴别,准确度达100%。通过一级母离子和二级碎片离子对220种特征差异物进行鉴定,最终鉴定出22种,主要成分为黄酮类、糖苷衍生物和有机酸类等,结合热图分析发现其在3种江西名茶中的含量具有明显差异。本研究对茶叶品质鉴别具有一定指导意义,该方法可广泛用于食品的分析和表征。
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
文摘The influence of three factors, such as volume percentage of reinforcement particles(i.e. Al2O3), tool tilt angle and concave angle of shoulder, on the mechanical properties of Cue Al2O3 surface composites fabricated via friction stir processing was studied. Taguchi method was used to optimize these factors for maximizing the mechanical properties of surface composites. The fabricated surface composites were examined by optical microscope for dispersion of reinforcement particles. It was found that Al2O3 particles are uniformly dispersed in the stir zone. The tensile properties of the surface composites increased with the increase in the volume percentage of the Al2O3 reinforcement particles.This is due to the addition of the reinforcement particles which increases the temperature of recrystallization by pinning the grain boundaries of the copper matrix and blocking the movement of the dislocations. The observed mechanical properties are correlated with microstructure and fracture features.
文摘Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on the plan of experiments generated through Taguchi's(L9) technique. Tribometer was used for the wear test and Scanning electron microscope was used to analyse the worn scar of the samples. The results shows that, A356 alloy reinforced with CHp exhibited better dry sliding wear resistance than the unreinforced alloy. Wear rate decreased as the amount of CHp reinforcement increased in the matrix. It was found that, the optimum level of the factors with minimized the wear loss were obtained at: wt%CHp(20%), applied load(10 N), sliding velocity(3 m/s) and sliding distance(2000 m). It can be seen that the wear track of the sample are(D ? 0.81 and L = 42.85 mm) and(D ? 0.54 and L= 27.03 mm) for A356 alloy and composites at optimum condition respectively. The results showed that the addition of cow horn particles as reinforcing materials in A356 alloy composites increased the wear resistance of the composites greatly.