期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN网络和多任务损失函数的实时叶片识别
1
作者 蔡兴泉 涂宇欣 +1 位作者 葛亚坤 杨哲 《系统仿真学报》 CAS CSCD 北大核心 2020年第7期1279-1286,共8页
针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特... 针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特征图,分别进行叶片分类和边界框回归,预测叶片类别和叶片预测框的定位;利用多任务损失函数约束分类和回归,来提高叶片分类和回归的准确率和运算速度。实验结果表明,该方法的平均实时叶片识别准确率为91.8%,平均实时识别速度为25 fps。 展开更多
关键词 叶片识别 特征图 CNN网络 多任务损失函数 区域候选框
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部