A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme...A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.展开更多
As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process w...As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry.展开更多
Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During...Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.展开更多
Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the de...Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.展开更多
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ...Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.展开更多
基金supported by the National Nature Science Foundation of China under Grant No. 60702070
文摘A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.
基金supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)Key Research and Development Plan of Shanxi Province(201903D321059)Shanxi Scholarship Council of China(HGKY2019071)。
文摘As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry.
基金Technology Innovation Foundation of Middle-minor Enterprises of Science and Technology from Ministryof Science and Technology (No. 19995103020074, 20003403023018)
文摘Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.
基金the National Natural Science Foundation of China (21773055, U1604122, 22005085)。
文摘Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs.
基金financial support by the Ministry of Science and Technology of China (Grant No.2018YFC1509006)the National Natural Science Foundation of China (Grant No.71874096)+1 种基金the Macao SAR Government Higher Education Fundthe Macao University of Science and Technology (Grant No.FRG-19-008-MSB)。
文摘Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.