Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat...Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.展开更多
A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse ...A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data.展开更多
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila...To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.展开更多
In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that t...In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that the solutions of sensor track fusion with and without feedback information are both optimal and equal.展开更多
文摘Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.
文摘A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data.
文摘To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.
文摘In distributed multisensor data fusion systems, there are two types of track fusion approaches. One is sensor track fusion with feedback information, the other is without feedback information. This paper proves that the solutions of sensor track fusion with and without feedback information are both optimal and equal.
文摘蛋白质含量是衡量稻米品质的关键因素之一。为探索利用光谱数据融合技术实现稻米蛋白质含量快速检测的潜力,试验提出了一种改进的二进制粒子群优化算法(Improved binary particle swarm optimization,IBPSO),该算法专门用于拉曼光谱与近红外光谱(R aman-NIR)融合数据的特征波长选择,能有效提升基于偏最小二乘法(Partial least squares,PLS)的回归校正模型的预测准确性。采用IBPSO构建的大米蛋白质含量检测模型,其预测决定系数(R_(p)^(2))达到了0.903,预测均方根误差(Root mean square error of prediction,RMSEP)为0.235%,预测平均相对误差(Mean relative error of prediction,MREP)则为2.768%,这些性能指标均优于采用其他4种经典算法进行特征波长选择后所建立的模型。结果表明:IBPSO通过粒子值为“1”二进制位的指导性寻优,能够实现高相关性建模波长变量的高效获取;IBPSO与光谱数据融合技术相结合能够实现大米蛋白质含量的快速检测,为相关在线检测装备的研发提供了理论支持。
基金Supported in part by the University of Colorado, the US National Science Foundation (Grants CMS-9625086,CMS-0201459, IIS-9711936, and HRD-0095944) the US Office of Naval Research (Grants N00014-97-1-0642 and N00014-02-1-0136) the Colorado Center for Information Storage, the Colorado Advanced Software Institute, Maxtor Corporation, Quantum Corporation, Storage Technology Corporation, and Data Fusion Corporation
文摘Research in control systems, sensor fusion and haptic interfaces is reviewed.