As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-determinist...The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.展开更多
With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the ve...With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
To ensure multiple unmanned aerial vehicles (UAVs)reach stable formation quickly, a cooperative guidance law basedon the back-stepping-like approach is designed in this paper.Adopting the guidance mechanism of virtu...To ensure multiple unmanned aerial vehicles (UAVs)reach stable formation quickly, a cooperative guidance law basedon the back-stepping-like approach is designed in this paper.Adopting the guidance mechanism of virtue leader vehicle, thedynamic equation of tracking errors for each UAV is built. Thecommunication interactive relationships are described based ongraph theory, and the guidance law for formation reaching is ob-tained by the back-stepping-like approach. The formation stabilityis analyzed by constructing an appropriate Lyapunov function. Thesimulation results have shown that this guidance and control lawcan make each UAV converge to the trajectory of the virtue leaderultimately, and has the quicker rate of convergence and lowertracking error.展开更多
Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction...Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc...According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.展开更多
Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents in...Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents include opti-mal path points generation,path smoothing and cooperative rendezvous.In the path points generation part,the path points availability testing algorithm and the path segments availability testing algorithm are designed,on this foundation,the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path.In the path smoothing part,taking ter-minal attack angle constraint and maneuverability constraint into consideration,the Dubins curve is introduced to smooth the path segments.In cooperative rendezvous part,we take esti-mated time of arrival requirement constraint and flight speed range constraint into consideration,the speed control strategy and flight path control strategy are introduced,further,the decoupling scheme of the circling maneuver and detouring maneuver is designed,in this case,the maneuver ways,maneu-ver point,maneuver times,maneuver path and flight speed are determined.Finally,the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles(UAVs)is effectively real-ized,in this way,the combat situation suppression against the enemy can be realized in SEAD scenarios.展开更多
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
基金the National Natural Science Foundation of China(61573285)。
文摘The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.
基金supported by the Fundamental Research Funds for the Central Universities(2024JBZX038)the National Natural Science Foundation of China(62076023).
文摘With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
文摘To ensure multiple unmanned aerial vehicles (UAVs)reach stable formation quickly, a cooperative guidance law basedon the back-stepping-like approach is designed in this paper.Adopting the guidance mechanism of virtue leader vehicle, thedynamic equation of tracking errors for each UAV is built. Thecommunication interactive relationships are described based ongraph theory, and the guidance law for formation reaching is ob-tained by the back-stepping-like approach. The formation stabilityis analyzed by constructing an appropriate Lyapunov function. Thesimulation results have shown that this guidance and control lawcan make each UAV converge to the trajectory of the virtue leaderultimately, and has the quicker rate of convergence and lowertracking error.
基金supported by the National Natural Science Foundation of China(60974146)the Natural Science and Engineering Research Council of Canada(NSERC)
文摘Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2008AA12A216)
文摘According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.
文摘Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents include opti-mal path points generation,path smoothing and cooperative rendezvous.In the path points generation part,the path points availability testing algorithm and the path segments availability testing algorithm are designed,on this foundation,the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path.In the path smoothing part,taking ter-minal attack angle constraint and maneuverability constraint into consideration,the Dubins curve is introduced to smooth the path segments.In cooperative rendezvous part,we take esti-mated time of arrival requirement constraint and flight speed range constraint into consideration,the speed control strategy and flight path control strategy are introduced,further,the decoupling scheme of the circling maneuver and detouring maneuver is designed,in this case,the maneuver ways,maneu-ver point,maneuver times,maneuver path and flight speed are determined.Finally,the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles(UAVs)is effectively real-ized,in this way,the combat situation suppression against the enemy can be realized in SEAD scenarios.