为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获...为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获得系统在简谐涡激力下达到稳态谐振时结构的动力放大系数和MTMD对结构的附加模态阻尼比,并与单一频率调谐质量阻尼器(Single Tuned Mass Damper,STMD)的减振控制效果进行对比,然后以附加模态阻尼比为目标对MTMD进行参数优化。结果表明:MTMD比最优参数STMD拥有更宽的控制频带和更好的减振效果,经优化后的MTMD减振性能优于最优参数STMD。实际应用MTMD时,应选择较大广义质量、5~7种频率规格,并根据二者找到无量纲频率范围和各TMD阻尼比的惟一最优取值。展开更多
大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果...大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果,而采用多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)时,受现场条件限制,又存在无法确定最优安装位置等问题.本文开展了基于MTMD的管道倍频响应减振研究.首先,开展了某化工企业丙烷脱氢装置的大型管道现场实测研究,发现管道振动频率存在明显的倍数关系,即倍频现象.其次,建立局部管道有限元模型,分析管道动力特性,提出了基于数值搜索法的MTMD参数设计方法.最后,考虑化工管道现场安装条件的限制,研究了MTMD安装位置对管道减振效果的影响.数值研究结果表明,安装MTMD可有效减小管道振动响应.展开更多
文摘为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获得系统在简谐涡激力下达到稳态谐振时结构的动力放大系数和MTMD对结构的附加模态阻尼比,并与单一频率调谐质量阻尼器(Single Tuned Mass Damper,STMD)的减振控制效果进行对比,然后以附加模态阻尼比为目标对MTMD进行参数优化。结果表明:MTMD比最优参数STMD拥有更宽的控制频带和更好的减振效果,经优化后的MTMD减振性能优于最优参数STMD。实际应用MTMD时,应选择较大广义质量、5~7种频率规格,并根据二者找到无量纲频率范围和各TMD阻尼比的惟一最优取值。
文摘大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果,而采用多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)时,受现场条件限制,又存在无法确定最优安装位置等问题.本文开展了基于MTMD的管道倍频响应减振研究.首先,开展了某化工企业丙烷脱氢装置的大型管道现场实测研究,发现管道振动频率存在明显的倍数关系,即倍频现象.其次,建立局部管道有限元模型,分析管道动力特性,提出了基于数值搜索法的MTMD参数设计方法.最后,考虑化工管道现场安装条件的限制,研究了MTMD安装位置对管道减振效果的影响.数值研究结果表明,安装MTMD可有效减小管道振动响应.