The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
提出了一种新的双基地多输入多输出(multiple-input multiple-output,MIMO)雷达二维方位角及多普勒频率联合估计算法。该算法基于m-Capon方法将目标波离方向(direction of departure,DOD)与波达方向(direction of arrival,DOA)相"...提出了一种新的双基地多输入多输出(multiple-input multiple-output,MIMO)雷达二维方位角及多普勒频率联合估计算法。该算法基于m-Capon方法将目标波离方向(direction of departure,DOD)与波达方向(direction of arrival,DOA)相"去耦",得出了对目标DOD和DOA的估计;然后,在对目标二维方位角的估计的基础上,算法可进一步估计出目标的多普勒频率。因此,其估计出的目标二维方位角与多普勒频率可自动配对。该算法无需预判目标数及对数据协方差矩阵特征值分解,且对目标二维方位角与多普勒频率的联合估计不涉及高维的非线性优化搜索,具有较小的计算量。此外,该算法可适用于发射和接收阵列为任意阵列结构的双基地MIMO雷达系统。计算机仿真结果证明了本文方法的正确性和可行性。展开更多
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘提出了一种新的双基地多输入多输出(multiple-input multiple-output,MIMO)雷达二维方位角及多普勒频率联合估计算法。该算法基于m-Capon方法将目标波离方向(direction of departure,DOD)与波达方向(direction of arrival,DOA)相"去耦",得出了对目标DOD和DOA的估计;然后,在对目标二维方位角的估计的基础上,算法可进一步估计出目标的多普勒频率。因此,其估计出的目标二维方位角与多普勒频率可自动配对。该算法无需预判目标数及对数据协方差矩阵特征值分解,且对目标二维方位角与多普勒频率的联合估计不涉及高维的非线性优化搜索,具有较小的计算量。此外,该算法可适用于发射和接收阵列为任意阵列结构的双基地MIMO雷达系统。计算机仿真结果证明了本文方法的正确性和可行性。