In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable imp...In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.展开更多
The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the obje...The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.展开更多
A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties ...A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary ...In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.展开更多
This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired...This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.展开更多
基金supported by the Aeronautical Science Foundation of China(20150172001)
文摘In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.
基金supported by the National Natural Science Foundation of China(50875024)
文摘The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.
文摘A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-Optical Equipment Institute,Aviation Industry Corporation of China (6142504200108)。
文摘In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.
文摘This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.