In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进...由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。展开更多
近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱...近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.展开更多
在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过...在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。展开更多
针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶...针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶偏导数小于零的特性,通过对方位角和仰角求二阶偏导,构造了新的空间谱函数.对新的空间谱函数进行谱峰搜索,其负向谱峰所对应的角度就是目标的波达方向(Direction Of Arrival,DOA)估计.理论分析和仿真结果表明,在低信噪比、小快拍数下,该方法对相近信源有更高的角度分辨率和更低的均方根误差,并且可适用于任何阵型.展开更多
多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,...多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。展开更多
针对空间谱估计算法在实际应用中的误差问题,讨论了在存在阵列幅相误差背景下,多重信号分类法(MUSIC:MUltiple SIgnal Classification)测向算法在DSP(Digital Signal Processor)上实现的一种方法。通过设置方位精确的辅助阵元对幅相误...针对空间谱估计算法在实际应用中的误差问题,讨论了在存在阵列幅相误差背景下,多重信号分类法(MUSIC:MUltiple SIgnal Classification)测向算法在DSP(Digital Signal Processor)上实现的一种方法。通过设置方位精确的辅助阵元对幅相误差进行校正,辅助阵元的方位信息为误差参数的计算提供了必要的信息量,然后利用MUSIC算法进行波达方向估计,同时利用TI公司高速DSP芯片(TMS320C6713)实现了在阵列幅相误差背景下的MUSIC测向方法。仿真结果证明了该方法的有效性。展开更多
正交匹配追踪(OMP)类算法是经典贪婪类稀疏重构算法,具有对空间中的相干信号不敏感和运算速度快的特点,但其本身寻优的过程与波束形成(CBF)算法相似,所以受到瑞利限的影响,无法分辨出相近角度.对此提出一种基于MUSIC的稀疏重构解相干算...正交匹配追踪(OMP)类算法是经典贪婪类稀疏重构算法,具有对空间中的相干信号不敏感和运算速度快的特点,但其本身寻优的过程与波束形成(CBF)算法相似,所以受到瑞利限的影响,无法分辨出相近角度.对此提出一种基于MUSIC的稀疏重构解相干算法(modified MUSIC OMP,MMO).该算法将MUSIC算法的思想引入到正交匹配追踪算法寻优中,解决了MUSIC算法不能直接解相干和正交匹配追踪算法无法实现超分辨的问题.仿真结果表明,与OMP解相干算法、CBF算法、MUSIC算法相比,MMO算法具有良好的性能.展开更多
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
文摘由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。
文摘近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.
文摘在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。
文摘针对经典二维多重信号分类(Multiple Signal Classification,MUSIC)算法在低信噪比和小快拍数情况下,分辨率受阵列孔径限制的问题,提出了一种改进的基于MUSIC算法的二维测向算法.该方法利用MUSIC谱函数极大值点处对方位角和仰角的二阶偏导数小于零的特性,通过对方位角和仰角求二阶偏导,构造了新的空间谱函数.对新的空间谱函数进行谱峰搜索,其负向谱峰所对应的角度就是目标的波达方向(Direction Of Arrival,DOA)估计.理论分析和仿真结果表明,在低信噪比、小快拍数下,该方法对相近信源有更高的角度分辨率和更低的均方根误差,并且可适用于任何阵型.
文摘多重信号分类(multiple signal classification,MUSIC)算法是一种经典的空间谱估计算法,其利用信号子空间和噪声子空间相互正交的特性,估计出入射信号的波达方向(direction of arrival,DOA)。文章以二维高精度DOA估计的应用需求为目标,通过分析MUSIC算法中各个步骤的计算特点,提出了一种算法的实现方法,并在现场可编程门阵列(field programmable gate array,FPGA)上完成了各个模块硬件电路的设计验证。该方法利用矩阵元素行列序号的对称性,得到了一种计算协方差矩阵的并行化分解方案;采用阈值比较法提高特征分解速度的同时,避免了最值求解,降低了硬件复杂度;在谱峰搜索中使用分步搜索法来提高实时性,并设计了专用硬件电路计算方向向量,以节省存储资源和避免数据读取延时带来的性能损失;与传统实现方法相比,实现了高精度和高实时性的统一。实验结果表明,该方法中的硬件实现方案在100 MHz工作频率的FPGA芯片上,完成一次精度为0.1°的二维DOA估计耗时3~5ms,具有精度高、速度快、资源消耗少的优势。
文摘针对空间谱估计算法在实际应用中的误差问题,讨论了在存在阵列幅相误差背景下,多重信号分类法(MUSIC:MUltiple SIgnal Classification)测向算法在DSP(Digital Signal Processor)上实现的一种方法。通过设置方位精确的辅助阵元对幅相误差进行校正,辅助阵元的方位信息为误差参数的计算提供了必要的信息量,然后利用MUSIC算法进行波达方向估计,同时利用TI公司高速DSP芯片(TMS320C6713)实现了在阵列幅相误差背景下的MUSIC测向方法。仿真结果证明了该方法的有效性。
文摘正交匹配追踪(OMP)类算法是经典贪婪类稀疏重构算法,具有对空间中的相干信号不敏感和运算速度快的特点,但其本身寻优的过程与波束形成(CBF)算法相似,所以受到瑞利限的影响,无法分辨出相近角度.对此提出一种基于MUSIC的稀疏重构解相干算法(modified MUSIC OMP,MMO).该算法将MUSIC算法的思想引入到正交匹配追踪算法寻优中,解决了MUSIC算法不能直接解相干和正交匹配追踪算法无法实现超分辨的问题.仿真结果表明,与OMP解相干算法、CBF算法、MUSIC算法相比,MMO算法具有良好的性能.