A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are runn...A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.展开更多
Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized ...Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized variables were divided into 2 groups according to the original information and 2 corresponding neural networks were established. A radial basis function network was used to depict the relationship between the output variables and the first group input variables which contain main original information. An other single-layer neural network model was used to compensate the error between the output of radial basis function network and the actual output variables. At last, The multiple network was used as soft sensor for the ratio of soda to aluminate in the process of high-pressure digestion of alumina. Simulation of industry application data shows that the prediction error of the model is less than 3%, and the model has good generalization ability.展开更多
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way...The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
To accurately assess the performance of cooperative multiple packet reception (MPR) based on network-assisted diversity multiple access (NDMA), non-ideal collision detection is introduced in ALLIANCES (ALLow impr...To accurately assess the performance of cooperative multiple packet reception (MPR) based on network-assisted diversity multiple access (NDMA), non-ideal collision detection is introduced in ALLIANCES (ALLow improved access in the network via cooperation and energy savings). To provide a unified anatysis frame- work, the length of cooperative transmission epoch is fixed to the detected collision order. The mathematical analysis of potential throughput (PTP) and potential packet loss rate (PPLR) are given under a pessimistic assumption and an optimistic assumption. According to the analysis of PTP and PPLR, threshold selection is done to optimize system performances, e.g. the optimal threshold should guarantee PTP to be maximum or guarantee PPLR to be minimum. In simulations, the thresholds are selected according to PTP under the pessimistic assumption. Simulation results show that the proposed cooperative MPR scheme can achieve higher throughput than NDMA and slotted ALOHA schemes.展开更多
文摘A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.
基金Project ( 2001AA411040 ) supported by the National High Technology Development Program of China project(2002CB312200) supported by the National Fundamental Research and Development Program of China
文摘Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized variables were divided into 2 groups according to the original information and 2 corresponding neural networks were established. A radial basis function network was used to depict the relationship between the output variables and the first group input variables which contain main original information. An other single-layer neural network model was used to compensate the error between the output of radial basis function network and the actual output variables. At last, The multiple network was used as soft sensor for the ratio of soda to aluminate in the process of high-pressure digestion of alumina. Simulation of industry application data shows that the prediction error of the model is less than 3%, and the model has good generalization ability.
基金Supported by the National Natural Science Foundation of P.R.China (60274017, 60572070, 60325311) the Natural Science Foundation of Liaoning Province (20022030)
文摘The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
基金supported by the National Natural Science Foundation of China(60972039)the National High-Tech Research and Development Program of China(2009AA01Z241)+2 种基金the Key Grant and Basic Research Programs of Natural Science Fund for Higher Education of Jiangsu Province(06KJA51001)the Project Key Grant Research Programs of Natural Science Fund of Science and Technology Department of Jiangsu Province(BK2007729)the Natural Science Fund for Higher Education of Jiangsu Province(09KJB510012).
文摘To accurately assess the performance of cooperative multiple packet reception (MPR) based on network-assisted diversity multiple access (NDMA), non-ideal collision detection is introduced in ALLIANCES (ALLow improved access in the network via cooperation and energy savings). To provide a unified anatysis frame- work, the length of cooperative transmission epoch is fixed to the detected collision order. The mathematical analysis of potential throughput (PTP) and potential packet loss rate (PPLR) are given under a pessimistic assumption and an optimistic assumption. According to the analysis of PTP and PPLR, threshold selection is done to optimize system performances, e.g. the optimal threshold should guarantee PTP to be maximum or guarantee PPLR to be minimum. In simulations, the thresholds are selected according to PTP under the pessimistic assumption. Simulation results show that the proposed cooperative MPR scheme can achieve higher throughput than NDMA and slotted ALOHA schemes.
基金This work was supported in part by the National Natural Science Foundation of China (11562006, 11661025), the Outstanding Young Teachers Training in Higher Education Institutions of Guangxi (gxqg022014025), and the Natural Science Foundation of Guangxi Province (2015GXNSFAA139013).