期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
1
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
在线阅读 下载PDF
利用局部-全局时间依赖的弱监督视频异常检测
2
作者 宋鹏程 郭立君 张荣 《计算机应用》 北大核心 2025年第1期240-246,共7页
弱监督视频异常检测(WS-VAD)对智能安防领域具有重要意义。而目前WS-VAD任务面临以下问题:现有方法更关注对视频片段本身的判别,而忽略了片段之间的局部和全局时间依赖性;在损失函数设置上忽略了异常事件的时序结构;异常视频中存在大量... 弱监督视频异常检测(WS-VAD)对智能安防领域具有重要意义。而目前WS-VAD任务面临以下问题:现有方法更关注对视频片段本身的判别,而忽略了片段之间的局部和全局时间依赖性;在损失函数设置上忽略了异常事件的时序结构;异常视频中存在大量正常片段噪声,干扰训练的收敛。因此,提出一种基于局部-全局时间依赖(LGTD)网络的弱监督视频异常检测方法。该方法中,LGTD网络利用多尺度时序特征融合(MTFF)模块捕获不同时间跨度内片段的局部时间相关性;同时,利用多头自注意力(MHSA)模块整合视频内所有片段的信息,从而理解整个视频序列的时间相关性;之后,利用通道注意力挤压-激励(SE)模块优化片段内部的特征权重,从而更准确地捕捉视频片段的时空特征,并显著提升检测性能。此外,进一步改进现有损失函数,即引入互补的K-maxmin包内损失和Top-K包外损失,以提高从异常视频中选取异常片段进行训练优化的概率。实验结果表明,所提方法在UCF-Crime和ShanghaiTech数据集上的平均曲线下面积(AUC)分别达到了83.18%和95.41%,与协同正态学习(CNL)方法相比,分别提高了0.08和7.21个百分点。可见,所提方法能有效提升检测性能。 展开更多
关键词 视频异常检测 弱监督学习 多实例学习 多尺度特征融合 多头自注意力机制
在线阅读 下载PDF
集成模糊LSA与MIL的图像分类算法 被引量:4
3
作者 李大湘 彭进业 李展 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第10期1796-1802,1809,共8页
针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首... 针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首先利用K-Means方法对训练包中所有的示例进行聚类,建立"视觉词汇表";然后根据"视觉字"与示例之间的距离定义模糊隶属度函数,建立模糊"词-文档"矩阵,再采用LSA方法获得多示例包(图像)的模糊潜在语义模型,并通过该模型将每个多示例包转化成单个样本;采用半监督的TSVM训练分类器,以利用未标注图像来提高分类精度.基于Corel图像库的对比实验结果表明,与传统的LSA方法相比,模糊LSA的分类准确率提高了5.6%,且性能优于其他分类方法. 展开更多
关键词 多示例学习 场景图像分类 模糊潜在语义分析
在线阅读 下载PDF
基于QPSO-MIL算法的图像标注 被引量:2
4
作者 李大湘 彭进业 卜起荣 《计算机科学》 CSCD 北大核心 2010年第6期278-282,296,共6页
在多数现有图像标注图像库中,关键字只标注在图像级而非区域级,使有监督学习方法在图像标注中难以应用。基于量子粒子群优化算法(quantum-behaved particle swarm optimization,QPSO)提出了一种新的多示例学习(multi-instance learning,... 在多数现有图像标注图像库中,关键字只标注在图像级而非区域级,使有监督学习方法在图像标注中难以应用。基于量子粒子群优化算法(quantum-behaved particle swarm optimization,QPSO)提出了一种新的多示例学习(multi-instance learning,MIL)算法——QPSO-MIL算法,在多示例学习的框架下将基于区域的图像标注问题描述成一个有监督的学习问题。该方法将图像当作包,分割的区域当作包中的示例,利用多样性密度(DD)函数,定义了粒子的适应度向量。在示例空间,利用QPSO方法在各个维度上同时搜索DD函数的全局极大值点,作为关键字的概念点,然后根据Bayesian后验概率最大准则(MAP)对图像进行标注。通过ECCV2002图像库的实验结果表明,QPSO-MIL算法是有效的。 展开更多
关键词 多示例学习 图像标注 量子粒子群优化
在线阅读 下载PDF
基于深度学习模型辅助穿刺病理图像预测乳腺癌新辅助治疗疗效的研究
5
作者 罗云昭 蒋宏传 徐峰 《中国全科医学》 北大核心 2025年第19期2407-2413,共7页
背景术前新辅助治疗(NAT)是治疗局部晚期乳腺癌的标准化手段,但只有部分患者对NAT敏感,在NAT前对患者进行疗效预测至关重要。既往研究利用统计学方法结合临床数据或深度学习方法结合影像学图像预测乳腺癌NAT疗效,效果欠佳。目的利用多... 背景术前新辅助治疗(NAT)是治疗局部晚期乳腺癌的标准化手段,但只有部分患者对NAT敏感,在NAT前对患者进行疗效预测至关重要。既往研究利用统计学方法结合临床数据或深度学习方法结合影像学图像预测乳腺癌NAT疗效,效果欠佳。目的利用多示例学习(MIL)方法训练基于乳腺癌粗针穿刺全切片图像(WSI)的深度学习(DL-CNB)模型,实现对病理性完全缓解(pCR)的预测和相关肿瘤区域的可视化。方法采用回顾性研究模式,收集北京朝阳医院2019年4月—2022年4月收治的经NAT的乳腺癌患者的临床资料和NAT前穿刺苏木精-伊红(HE)染色切片。依据纳排标准共筛选出195例患者。根据Miller-Payne(MP)分级将患者分为pCR组(MP=5级,n=40)和non-pCR组(MP=1~4级,n=155)。首先对临床资料进行分析,构建pCR影响因素的Logistic回归模型。将所有WSI图像按照4∶1的比例随机划分为训练集和测试集,并从训练集中取出25%的数据作为验证集。标记每张WSI中全部肿瘤细胞区域,通过滑动窗口取块、数据筛选、数据增强、归一化处理等步骤准备训练集。对比5种卷积神经网络模型,选择最优模型作为DL-CNB的特征提取器。设置参数训练DL-CNB模型。利用独立测试集测试模型,评价DL-CNB的预测价值。根据由注意力模块获得的权重绘制热力图,实现WSI中与预测相关重要区域的可视化。结果pCR组组织学分级高、ER阴性、PR阴性、HER2阳性、Ki-67高表达的患者占比高于non-pCR组(P<0.05)。与HR+/HER2-相比,HR-/HER2+(OR=10.189,95%CI=3.225~32.187)和HR+/HER2+(OR=3.349,95%CI=1.152~9.737)可测预患者达到pCR状况(P<0.05)。Logistic回归模型的受试者工作特征曲线下面积(AUC)为0.769,准确率为81.000%。DL-CNB模型独立测试集AUC为0.914,准确率为84.211%。随机选取独立测试集中某张标签为non-pCR和某张标签为pCR的WSI肿瘤区域进行可视化展示。结论DL-CNB模型实现了通过乳腺癌穿刺WSI对新辅助治疗pCR的预测和重要区域的可视化,其预测结果优于临床数据预测模型。由此,本研究能够为符合NAT适应证的乳腺癌患者提供临床决策参考,辅助实现个体化精准治疗,对改善患者生活质量及生存预期具有重大意义。 展开更多
关键词 乳腺肿瘤 乳腺癌新辅助治疗 穿刺病理全切片图像 深度学习模型 多示例学习算法 精准治疗
在线阅读 下载PDF
基于AFSVM-MIL算法的图像标注
6
作者 邓剑勋 熊忠阳 曾代敏 《计算机应用研究》 CSCD 北大核心 2011年第10期3917-3919,3924,共4页
通常情况下关键字只标注在图像上,而多示例(MIL)检索的需要将关键字下沉到区域。针对这个问题,在模糊支持向量机算法(FSVM)的基础上提出了一种改进的自适应模糊支持向量机多示例学习算法(AFS-VM-MIL算法),在多示例学习的框架下把区域级... 通常情况下关键字只标注在图像上,而多示例(MIL)检索的需要将关键字下沉到区域。针对这个问题,在模糊支持向量机算法(FSVM)的基础上提出了一种改进的自适应模糊支持向量机多示例学习算法(AFS-VM-MIL算法),在多示例学习的框架下把区域级的图像标注变成了一种有监督的学习。该方法利用AFSVM-MIL对训练集进行分类,结合包之间的相似度进行广义集合运算,可以有效地将关键字进行下沉,从而达到减少人工标注工作量的目的。实验结果表明,该方法有效且性能优于其他方法。 展开更多
关键词 图像标注 多示例学习 自适应模糊支持向量机 广义集合运算
在线阅读 下载PDF
用FSVM-MIL算法实现图像检索
7
作者 李大湘 彭进业 卜起荣 《光电工程》 CAS CSCD 北大核心 2009年第9期98-103,共6页
针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法—FSVM-MIL算法。在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包。FSVM-MIL算法将图像当作包,分割后的区... 针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法—FSVM-MIL算法。在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包。FSVM-MIL算法将图像当作包,分割后的区域当作包中的示例,若图像包含有感兴趣对象,则对应的包标为正,否则标为负,因为正包中的示例不全是正的,概念标号存在模糊性,本文利用多样性密度方法寻找概念点,根据noisy-or概率模型定义了模糊隶属度函数,为正包中的示例赋予不同的模糊因子,用FSVM求解多示例学习问题。在SIVAL图像集进行对比实验,结果表明FSVM-MIL算法是有效的且性能不亚于其它同类方法。 展开更多
关键词 模糊支持向量机 基于对象的图像检索 多示例学习
在线阅读 下载PDF
基于标签置信度的弱监督自训练视频异常检测算法
8
作者 赵义正 《高技术通讯》 北大核心 2025年第4期360-369,共10页
在公共安全领域,如何借助视频监控设备实现实时、高效的异常事件检测,已成为一个的重要研究课题。为此,本文提出一种基于隐式类激活特征和标签置信度的弱监督视频异常检测算法。针对正常与异常之间的界限模糊并会随着不同的场景而有所... 在公共安全领域,如何借助视频监控设备实现实时、高效的异常事件检测,已成为一个的重要研究课题。为此,本文提出一种基于隐式类激活特征和标签置信度的弱监督视频异常检测算法。针对正常与异常之间的界限模糊并会随着不同的场景而有所变化的问题,提出使用隐式类激活模块差异化正常和异常的类间特征表达。针对多示例学习框架引入的标签噪声问题,采用基于标签置信度感知的自训练策略,通过计算伪标签的置信度,在模型迭代过程不断提高伪标签的质量。本文算法在ShanghaiTech和UCF-Crime这2个公开数据集上的曲线下面积(area under curve,AUC)分别达到97.63%和86.38%。模型在制造业工厂实际场景中进行测试,实验结果表明所提算法能够有效检测视频中的异常事件。 展开更多
关键词 视频异常检测 自训练 多示例学习 弱监督学习
在线阅读 下载PDF
基于预训练的并发业务过程实例剩余执行时间预测方法
9
作者 倪维健 姜隆 +2 位作者 曾庆田 刘彤 徐兴宗 《计算机集成制造系统》 北大核心 2025年第5期1735-1746,共12页
现有的基于深度学习的业务流程剩余时间预测方法大多针对单一执行实例构建预测模型,无法感知到同时执行的其他并发实例在资源竞争等方面的影响,并且对于实例嵌入表示缺少深入探究,导致现有方法的预测效果还有较大提升空间。针对现有方... 现有的基于深度学习的业务流程剩余时间预测方法大多针对单一执行实例构建预测模型,无法感知到同时执行的其他并发实例在资源竞争等方面的影响,并且对于实例嵌入表示缺少深入探究,导致现有方法的预测效果还有较大提升空间。针对现有方法的不足,提出了基于包注意力的并发多实例剩余时间预测方法,并引入了基于自监督学习的实例嵌入表示方法以提升实例表示的质量。首先,给出了并发实例数据集的构建方法,并在事件活动的基础上添加事件属性,丰富了后续模型的信息输入;之后,通过预训练的方式得到实例属性嵌入表示;最后,将流程实例属性以多通道卷积的形式进行编码,并通过注意力机制对并发实例进行融合。实验结果表明,所提方法与传统方法相比,有效提升了剩余时间预测的准确性。 展开更多
关键词 业务流程管理 剩余执行时间预测 并发多实例 深度学习
在线阅读 下载PDF
结合低维特征和在线加权MIL的目标跟踪算法 被引量:1
10
作者 孔凡芝 李金龙 吴冬梅 《计算机工程与应用》 CSCD 北大核心 2019年第18期116-121,139,共7页
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀... 为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀疏特征在线学习生成弱分类器集,并通过示例加权方法来促进学习过程,最终生成一个强分类器,用于测试视频中的目标跟踪。实验结果表明,该算法在旋转、光照和尺度变化等影响下取得了优异的效果。相比其他几种改进型多示例学习算法,提出的算法获得了更好的跟踪效果。 展开更多
关键词 目标跟踪 在线加权多示例学习 HAAR-LIKE特征 稀疏表示
在线阅读 下载PDF
弱监督场景下的支持向量机算法综述 被引量:6
11
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量机 半监督学习 多示例学习 多标记学习
在线阅读 下载PDF
全局感知与稀疏特征关联图像级弱监督病理图像分割
12
作者 张印辉 张金凯 +4 位作者 何自芬 刘珈岑 吴琳 李振辉 陈光晨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3672-3682,共11页
弱监督语义分割方法可以节省大量的人工标注成本,在病理全切片图像(WSI)的分析中有着广泛应用。针对弱监督多实例学习(MIL)方法在病理图像分析中存在的像素实例相互独立缺乏依赖关系,分割结果局部不一致和图像级标签监督信息不充分的问... 弱监督语义分割方法可以节省大量的人工标注成本,在病理全切片图像(WSI)的分析中有着广泛应用。针对弱监督多实例学习(MIL)方法在病理图像分析中存在的像素实例相互独立缺乏依赖关系,分割结果局部不一致和图像级标签监督信息不充分的问题,该文提出一种全局感知与稀疏特征关联图像级弱监督的端到端多实例学习方法(DASMob-MIL)。首先,为克服像素实例之间的独立性,使用局部感知网络提取特征以建立局部像素依赖,并级联交叉注意力模块构建全局信息感知分支(GIPB)以建立全局像素依赖关系。其次,引入像素自适应细化模块(PAR),通过多尺度邻域局部稀疏特征之间的相似性构建亲和核,解决了弱监督语义分割结果局部不一致的问题。最后,设计深度关联监督模块(DAS),通过对多阶段特征图生成的分割图进行加权融合,并使用权重因子关联损失函数以优化训练过程,以降低弱监督图像级标签监督信息不充分的影响。DASMob-MIL模型在自建的结直肠癌数据集YN-CRC和公共弱监督组织病理学图像数据集LUAD-HistoSeg-BC上与其他模型相比展示出了先进的分割性能,模型权重仅为14 MB,在YN-CRC数据集上F1 Score达到了89.5%,比先进的多层伪监督(MLPS)模型提高了3%。实验结果表明,DASMob-MIL仅使用图像级标签实现了像素级的分割,有效改善了弱监督组织病理学图像的分割性能。 展开更多
关键词 弱监督语义分割 组织病理学图像 多实例学习 全局感知 稀疏特征
在线阅读 下载PDF
基于双重动态记忆网络的弱监督视频异常检测 被引量:1
13
作者 周文浩 胡宏涛 +1 位作者 陈旭 赵春晖 《计算机科学》 CSCD 北大核心 2024年第1期243-251,共9页
视频异常检测需从整段视频中识别帧级别的异常行为。弱监督方法使用正常与异常视频,辅以视频级别标签训练模型,相比无监督视方法展现出了更优越的性能。然而,目前的弱监督视频异常检测方法无法记录视频长期模态,且部分方法为了获得更优... 视频异常检测需从整段视频中识别帧级别的异常行为。弱监督方法使用正常与异常视频,辅以视频级别标签训练模型,相比无监督视方法展现出了更优越的性能。然而,目前的弱监督视频异常检测方法无法记录视频长期模态,且部分方法为了获得更优的检测效果,利用了未来帧的信息,导致无法在线应用。为此,文中首次提出了一种基于双重动态记忆网络的弱监督视频异常检测方法,通过设计包含两个记忆模块的记忆网络来分别记录视频中长期的正常和异常模态。为了实现视频特征和记忆项的协同更新,采用读操作基于记忆模块中的记忆项对视频帧的特征进行增强,采用写操作基于视频帧特征对记忆项的内容进行更新,同时记忆项的数量在训练的过程中会动态调整从而适应不同视频监控场景的需求。在训练时,设计模态分离损失增加记忆项之间的区分度。在测试时,仅需要记忆项而不需要未来视频帧的参与,从而实现准确的在线检测。在两个公开的弱监督视频异常检测数据集上的实验结果表明,所提方法优于所有在线应用的方法,相比只能离线应用的方法也具有很强的竞争力。 展开更多
关键词 视频异常检测 弱监督学习 记忆网络 多示例学习 深度学习
在线阅读 下载PDF
基于三元中心引导的弱监督视频异常检测
14
作者 朱子蒙 李志新 +2 位作者 郇战 陈瑛 梁久祯 《计算机应用》 CSCD 北大核心 2024年第5期1452-1457,共6页
针对监控视频异常的复杂多样性和短时持续性,引入弱监督视频异常检测方法,旨在仅使用视频级别的标签进行异常检测,并提出了基于变分自编码器(VAE)与长短期记忆(LSTM)网络的异常回归网络VLARNet作为异常检测框架,以捕获时序数据中的时间... 针对监控视频异常的复杂多样性和短时持续性,引入弱监督视频异常检测方法,旨在仅使用视频级别的标签进行异常检测,并提出了基于变分自编码器(VAE)与长短期记忆(LSTM)网络的异常回归网络VLARNet作为异常检测框架,以捕获时序数据中的时间依赖关系、去除冗余信息,保留数据的关键信息。该框架将异常检测视为回归问题,为学习检测特征,设计了异常分数回归的三元中心损失(TCLASR),与动态多实例学习损失(DMIL)相结合以进一步提高特征的区分能力。DMIL能够扩大异常实例与正常实例之间的类间距离,但同时也扩大了类内距离,而TCLASR可使来自同类的实例与类中心的距离更接近,与不同类中心的距离更远。对VLARNet在ShanghaiTech与CUHK Avenue数据集上进行了综合实验。实验结果表明,VLARNet能够有效利用视频数据的各种信息,在两个数据集上获得的受试者工作特征曲线下面积(AUC)分别为94.64%和93.00%,明显优于对比算法。 展开更多
关键词 异常检测 弱监督学习 多实例学习 中心损失 受试者工作特征曲线下面积
在线阅读 下载PDF
基于多示例学习图卷积网络的隐写者检测
15
作者 钟圣华 张智 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期771-789,共19页
隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写... 隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写者检测算法,将隐写者检测形式化为多示例学习(Multiple-instance learning, MIL)任务.本文中设计的共性增强图卷积网络(Graph convolutional network, GCN)和注意力图读出模块能够自适应地突出示例包中正示例的模式特征,构建有区分度的示例包表征并进行隐写者检测.实验表明,本文设计的模型能够对抗多种批量隐写术和与之对应的策略. 展开更多
关键词 图像隐写者检测 图卷积网络 多示例学习 示例包表征
在线阅读 下载PDF
基于聚类的多实例学习全视野数字切片分类
16
作者 钟海勤 赵程 +1 位作者 雷柏英 汪天富 《中国生物医学工程学报》 CSCD 北大核心 2024年第6期652-661,共10页
病理图像是检验癌症的金标准,对病理图像,尤其是全视野数字切片(WSI),进行快速、准确地分类有助于辅助医生对患者进行个性化治疗和预后评估。近年来,多实例学习(MIL)在WSI分类中发挥着越来越重要的作用。然而,由于WSI的数量有限,且阳性... 病理图像是检验癌症的金标准,对病理图像,尤其是全视野数字切片(WSI),进行快速、准确地分类有助于辅助医生对患者进行个性化治疗和预后评估。近年来,多实例学习(MIL)在WSI分类中发挥着越来越重要的作用。然而,由于WSI的数量有限,且阳性区域占比较低,现有的基于注意力机制的MIL方法可能会导致过拟合,从而影响分类的性能。为了解决这个问题,本研究提出一种新的基于聚类的MIL分类方法。具体地说,为了增加包的数量,让网络关注更多的阳性实例,将每个包划分为多个伪包;然后,为了解决在伪包划分过程中容易出现一个伪包全是阴性实例,导致产生噪声的现象,提出一种新的基于聚类的伪包划分方法;最后,为了获得更加精准的分类结果,将学习到的伪包级特征进行二次学习,得到最终的包级特征,并实现最终的WSI分类。在Camelyon16和TCGA-Lung数据集上进行实验,分别有399张WSI和1038张WSI,分类准确率分别为90.69%和86.54%,F1-评分分别为90.20%和86.52%。实验结果,表明所提出的方法可有效应用于WSI分类中。 展开更多
关键词 全视野数字切片 多实例学习 分类 聚类 伪包
在线阅读 下载PDF
在线加权多示例学习实时目标跟踪 被引量:29
17
作者 陈东成 朱明 +2 位作者 高文 孙宏海 杨文波 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1661-1667,共7页
由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最... 由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最大值的方法从弱分类器集中选择K个最优的弱分类器,给每个弱分类器赋不同的权值,生成一个强分类器;最后,在新的一帧中抽取目标和背景样本,用生成的强分类器对待分类的目标和背景进行分类;分类结果映射成概率值,概率最大样本的位置就是所要跟踪目标的位置。对不同视频序列的测试结果表明,该跟踪算法的跟踪正确率达93%,目标大小为43pixel×36pixel时处理帧率约为25frame/s。与原始多示例学习跟踪算法相比,本算法的实时性提高了67%。 展开更多
关键词 多示例学习 目标跟踪 分类器 权值
在线阅读 下载PDF
基于局部加权的Citation-kNN算法 被引量:9
18
作者 黄剑华 丁建睿 +1 位作者 刘家锋 张英涛 《电子与信息学报》 EI CSCD 北大核心 2013年第3期627-632,共6页
Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况。为解决该问题,该文提出局部加权的Citation-kNN算法,综合考虑样本的分布情况,提出基于样本距... Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况。为解决该问题,该文提出局部加权的Citation-kNN算法,综合考虑样本的分布情况,提出基于样本距离加权、基于样本离散度加权的方法,并对各种组合情况进行了实验。在标准数据集MUSK和乳腺超声图像数据库上的实验结果表明,该文提出的方法与Citation-kNN相比,性能有明显提高,并具有良好的适应性。 展开更多
关键词 图像识别 多示例学习 Citation-kNN 样本分布 局部加权
在线阅读 下载PDF
基于稀疏表达的多示例学习目标追踪算法 被引量:5
19
作者 苏巧平 刘原 +1 位作者 卜英乔 黄河 《计算机工程》 CAS CSCD 2013年第3期213-217,222,共6页
追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码... 追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码获得一个多示例学习的分类器,分类的结果与粒子滤波框架相结合,估计目标在整个视频序列中的运动状态。实验结果表明,该算法稳定性较好,与增量学习追踪算法、范式学习追踪算法和多示例学习追踪算法相比,其中心位置误差率减少30%以上。 展开更多
关键词 目标追踪 多示例学习 稀疏表达 分类器 粒子滤波 数据字典
在线阅读 下载PDF
基于多示例学习和随机蕨丛检测的在线目标跟踪 被引量:6
20
作者 罗艳 项俊 +1 位作者 严明君 侯建华 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1605-1611,共7页
基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移... 基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移。该文提出一种能够有效克服目标漂移的跟踪算法,采用检测器和跟踪器相结合的框架,利用中值流算法作为跟踪器,提高跟踪点的可靠性;级联若干个随机蕨弱分类器构成强分类器作为检测器;用在线多示例学习方法更新检测器,提高检测精度;最后将检测器、跟踪器的结果相融合得到最终的目标位置。实验结果表明,与其它方法相比,该方法对目标漂移有更强的鲁棒性。 展开更多
关键词 目标跟踪 中值流(MF) 随机蕨丛 在线多示例学习(mil)
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部