Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
为提升低空突防作战场景下分布式多输入多输出(Multiple Input and Multiple Output,MIMO)雷达系统的目标检测效能,提出一种合作博弈功率分配(Cooperative Game Power Allocation,CGPA)算法。基于带误差的支援信息建立了低空多径环境下...为提升低空突防作战场景下分布式多输入多输出(Multiple Input and Multiple Output,MIMO)雷达系统的目标检测效能,提出一种合作博弈功率分配(Cooperative Game Power Allocation,CGPA)算法。基于带误差的支援信息建立了低空多径环境下的分布式MIMO雷达信号模型,并推导了基于奈曼皮尔逊准则的检测模型。结合Max-Min准则以信干噪比(Signal to Interference plus Noise Ratio,SINR)为优化模型的效用函数。在此基础上,利用加权方法简化了联盟利益Shapley值的计算,得到满足帕累托最优性和公平性的合作资源分配方案。通过对发射功率资源的细致化管理,有效减小多径效应引起接收信号幅度的参差与衰落。在改善接收信号的稳定性的同时,挖掘并利用多径环境下丰富的散射特性,有效提升了雷达系统的探测效能。仿真实验验证了分布式MIMO雷达系统低空多径目标检测的出色性能,所提功率分配算法能够有效提升系统检测性能,并具有较好的实时性。展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-cod...The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协...针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协方差与估计误差协方差矩阵相关联以实现自适应调整。在此基础上,对三维跟踪下的贝叶斯克拉美罗下界进行推导,并将其作为跟踪误差衡量指标。通过构建关于目标威胁度与期望跟踪精度的函数关系,建立防空QoS模型下的闭环功率优化分配机制。证明所构建功率优化分配模型是凸优化问题,并进一步转化为半正定规划问题进行求解。仿真结果表明,相对于传统功率分配方法,所提方法能显著提高全局跟踪效能。展开更多
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.
文摘为提升低空突防作战场景下分布式多输入多输出(Multiple Input and Multiple Output,MIMO)雷达系统的目标检测效能,提出一种合作博弈功率分配(Cooperative Game Power Allocation,CGPA)算法。基于带误差的支援信息建立了低空多径环境下的分布式MIMO雷达信号模型,并推导了基于奈曼皮尔逊准则的检测模型。结合Max-Min准则以信干噪比(Signal to Interference plus Noise Ratio,SINR)为优化模型的效用函数。在此基础上,利用加权方法简化了联盟利益Shapley值的计算,得到满足帕累托最优性和公平性的合作资源分配方案。通过对发射功率资源的细致化管理,有效减小多径效应引起接收信号幅度的参差与衰落。在改善接收信号的稳定性的同时,挖掘并利用多径环境下丰富的散射特性,有效提升了雷达系统的探测效能。仿真实验验证了分布式MIMO雷达系统低空多径目标检测的出色性能,所提功率分配算法能够有效提升系统检测性能,并具有较好的实时性。
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
基金supported by the National Natural Science Foundation of China(61101097)
文摘The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。
文摘针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协方差与估计误差协方差矩阵相关联以实现自适应调整。在此基础上,对三维跟踪下的贝叶斯克拉美罗下界进行推导,并将其作为跟踪误差衡量指标。通过构建关于目标威胁度与期望跟踪精度的函数关系,建立防空QoS模型下的闭环功率优化分配机制。证明所构建功率优化分配模型是凸优化问题,并进一步转化为半正定规划问题进行求解。仿真结果表明,相对于传统功率分配方法,所提方法能显著提高全局跟踪效能。