Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) p...A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.展开更多
This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new al...This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new algorithm to compute the number of cluster in the network.Multiple-input/multiple-output(MIMO) communication promises performance enhancement over conventional single-input/single-output(SISO) technology for the same radiated power,if leveraged in multihop network,MIMO may be able to provide significant network performance improvement in network robustness and in power consumption,this paper analyzes three types of multihop networks employing SISO, MIMO with maximum ratio combining(MRC) and MIMO with maximum ratio transmission(MRT) as link model respectively,and get that using MIMO link model can increase robust,decrease mean path length by simulation.展开更多
In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The prop...In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The proposed scheme uses the time-reversed version of the channel impulse responses (CIR) obtained from the transmitted signal at base uplink to pre-process the station. By exploiting the weak correlations of fading channels for different user ends (UE), it is helpful to alleviate the multi-user interference (MUI) and co-channel interference (CCI). Moreover, the application of the TR technique in a multiple input-single output (MISO) configuration can reduce the delay spread of the channel impulse response, and mitigate inter-symbol interference (ISI). The UE can be simplified by canceling the iteration operation. Thus the data detection of the proposed scheme is rather simple as compared with the traditional IDMA, the complexity and computational load of UE is decreased substantially, and the proposed scheme provides a great deal of privacy and security to mobile users.展开更多
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.
文摘A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.
文摘This paper presents the concepts of completely connected network,mean path length and cluster for analysis performance of wireless multihop network,where matrix are used to express topology of network and use a new algorithm to compute the number of cluster in the network.Multiple-input/multiple-output(MIMO) communication promises performance enhancement over conventional single-input/single-output(SISO) technology for the same radiated power,if leveraged in multihop network,MIMO may be able to provide significant network performance improvement in network robustness and in power consumption,this paper analyzes three types of multihop networks employing SISO, MIMO with maximum ratio combining(MRC) and MIMO with maximum ratio transmission(MRT) as link model respectively,and get that using MIMO link model can increase robust,decrease mean path length by simulation.
基金the Nature Science Founding of China under Grant. No. 60496313National Basic Research Program of China under Grant No. 2007CB310604.
文摘In this paper, we propose a downlink transmission and receiving scheme for interleave-division multiple access (IDMA) system based on time-division duplexing (TDD) mode and time-reversal (TR) technique. The proposed scheme uses the time-reversed version of the channel impulse responses (CIR) obtained from the transmitted signal at base uplink to pre-process the station. By exploiting the weak correlations of fading channels for different user ends (UE), it is helpful to alleviate the multi-user interference (MUI) and co-channel interference (CCI). Moreover, the application of the TR technique in a multiple input-single output (MISO) configuration can reduce the delay spread of the channel impulse response, and mitigate inter-symbol interference (ISI). The UE can be simplified by canceling the iteration operation. Thus the data detection of the proposed scheme is rather simple as compared with the traditional IDMA, the complexity and computational load of UE is decreased substantially, and the proposed scheme provides a great deal of privacy and security to mobile users.