Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analyse...Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.展开更多
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler ...An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.展开更多
Reverse saturable absorption is essential for the realization of dissipative solitons.In this paper,we introduce reverse saturable absorption by using nonlinear multimode interference(NL-MMI),for the first time,to the...Reverse saturable absorption is essential for the realization of dissipative solitons.In this paper,we introduce reverse saturable absorption by using nonlinear multimode interference(NL-MMI),for the first time,to the best of our knowledge,and obtain a stable dissipative soliton operation.By adjusting the coupling efficiency from multimode fiber to single mode fiber,the absorption properties of NL-MMI can be switched between saturation and reverse saturation.The dissipative soliton can be obtained with pulse width of 975 fs in the experiment,the 3-dB bandwidth at 1555 nm is 16 nm,and the maximum output power is 11.48 m W.The nonlinear absorption optical modulation and high damage threshold characteristics of the NL-MMI based ultrafast optical switch provide a new idea for realizing dissipative solitons.展开更多
Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the d...Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.展开更多
文摘Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200202)the National Natural Science Foundation of China(Grant No.61804148)
文摘An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.
文摘Reverse saturable absorption is essential for the realization of dissipative solitons.In this paper,we introduce reverse saturable absorption by using nonlinear multimode interference(NL-MMI),for the first time,to the best of our knowledge,and obtain a stable dissipative soliton operation.By adjusting the coupling efficiency from multimode fiber to single mode fiber,the absorption properties of NL-MMI can be switched between saturation and reverse saturation.The dissipative soliton can be obtained with pulse width of 975 fs in the experiment,the 3-dB bandwidth at 1555 nm is 16 nm,and the maximum output power is 11.48 m W.The nonlinear absorption optical modulation and high damage threshold characteristics of the NL-MMI based ultrafast optical switch provide a new idea for realizing dissipative solitons.
基金Project supported by the National Natural Science Foundation of China (Grant No 60477018) and the Major Program of the National Natural Science Foundation of China (Grant No 60436020).
文摘Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.