期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
6
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
改进鲸鱼优化算法在前向激光散射颗粒测量技术粒径分布反演中的应用 被引量:1
8
作者 刘会玲 韩星星 +2 位作者 赵蓓 高冰 汪加洁 《光子学报》 北大核心 2025年第3期118-131,共14页
颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演... 颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演精度迅速恶化等问题。通过改进鲸鱼优化算法在多维函数求解寻优中的特性,针对前向激光散射法中颗粒粒径分布反演问题提出了一种对数形式的自适应概率阈值和非线性变化的收敛因子,提高了鲸鱼优化算法在反演寻优过程中平衡全局搜索以及局部寻优的能力。通过反向学习方法进行初始化以及借助贪婪原则进行个体更新,可以实现对颗粒粒度分布的精确快速反演。仿真结果表明,该算法对在不同程度随机噪声下服从正态分布、Rosin-Rammler分布和Johnson'S_(B)分布的单峰及多峰分布具有很好的鲁棒性与反演精度。将该算法应用于聚苯乙烯标准颗粒群的实验测量,得到了很好的反演结果,验证了该算法在抗噪性能和测量准确性上的有效性。 展开更多
关键词 前向激光散射 群智能优化算法 鲸鱼优化算法 颗粒粒度分布 多峰分布
在线阅读 下载PDF
异构集成代理辅助的区间多模态粒子群优化算法
9
作者 季新芳 张勇 +2 位作者 巩敦卫 郭一楠 孙晓燕 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1831-1853,共23页
现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题(Multimodal optimization problem,MMOP),即昂贵多模态优化问题(Expensive MMOP,EMMOP).在处理该类问题时,决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)... 现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题(Multimodal optimization problem,MMOP),即昂贵多模态优化问题(Expensive MMOP,EMMOP).在处理该类问题时,决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)找到多个高质量的最优解.然而,已有代理辅助的进化优化算法(Surrogate-assisted evolutionary algorithm,SAEA)很少考虑问题的多模态属性,运行一次仅可获得问题的一个最优解.鉴于此,研究一种异构集成代理辅助的区间多模态粒子群优化(Interval multimodal particle swarm optimization algorithm assisted by heterogeneous ensemble surrogate,IMPSO-HES)算法.首先,借助异构集成的思想构建一个由多个基础代理模型组成的模型池;随后,依据待评价粒子与已发现模态之间的匹配关系,从模型池中自主选择部分基础代理模型进行集成,并使用集成后的代理模型预测该粒子的适应值.进一步,为节约代理模型管理的代价,设计一种增量式的代理模型管理策略;为减少代理模型预测误差对算法性能的影响,首次将区间排序关系引入到进化过程中.将所提算法与当前流行的5种代理辅助进化优化算法和7种最先进的多模态优化算法进行对比,在20个测试函数和1个建筑节能实际问题上的实验结果表明,所提算法可以在较少计算代价下获得问题的多个高竞争最优解. 展开更多
关键词 粒子群优化 多模态优化 高昂计算代价 代理辅助
在线阅读 下载PDF
带交叉算子的量子粒子群优化算法 被引量:17
10
作者 陈汉武 朱建锋 +2 位作者 阮越 刘志昊 赵生妹 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期23-29,共7页
为了改善量子粒子群优化(QPSO)算法、提高其求解多峰优化问题的能力,采用新的粒子吸引点和势阱特征长度计算方法,引入遗传算法中的交叉算子并融入交叉概率自适应的参数控制技术,设计了一种带交叉算子的量子粒子群优化(CQPSO)算法.CQPSO... 为了改善量子粒子群优化(QPSO)算法、提高其求解多峰优化问题的能力,采用新的粒子吸引点和势阱特征长度计算方法,引入遗传算法中的交叉算子并融入交叉概率自适应的参数控制技术,设计了一种带交叉算子的量子粒子群优化(CQPSO)算法.CQPSO算法既可确保QPSO粒子群体的多样性、维护粒子整体的活力性,又能克服特殊情况下QPSO算法收敛的不稳定性和陷入局部最优的偶发性.实验结果表明,在21个标准测试函数中,无论对应单峰函数、多峰函数或是偏移、旋转函数,在相同的物理仿真平台上,CQPSO算法的性能在绝大多数情况下都优于其他改进的量子粒子群算法,从而验证了CQPSO算法的有效性和鲁棒性. 展开更多
关键词 量子粒子群优化 交叉算子 局部优化 多峰函数 收敛
在线阅读 下载PDF
遗传算法和粒子群优化算法的性能对比分析 被引量:52
11
作者 张鑫源 胡晓敏 林盈 《计算机科学与探索》 CSCD 2014年第1期90-102,共13页
遗传算法与粒子群优化算法作为经典的进化计算方法已经被广泛地应用于函数优化、生产调度、机器学习和数据挖掘等领域。对这两种经典算法在求解不同问题时的性能进行了系统的对比和分析,比较了两种算法在求解单峰和多峰问题上的性能差... 遗传算法与粒子群优化算法作为经典的进化计算方法已经被广泛地应用于函数优化、生产调度、机器学习和数据挖掘等领域。对这两种经典算法在求解不同问题时的性能进行了系统的对比和分析,比较了两种算法在求解单峰和多峰问题上的性能差异。进一步对算法的健壮性进行了测试,分析了算法运行过程中参数对算法性能的影响。最终总结出两种算法的性能特点,并讨论了算法的改进策略,旨在为工程应用中的算法选择提供技术参考。 展开更多
关键词 遗传算法 粒子群优化算法 单峰 多峰 性能对比
在线阅读 下载PDF
多峰函数优化的免疫云粒子群优化算法 被引量:15
12
作者 吴建辉 章兢 +2 位作者 陈华 王东 胡红平 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第8期1756-1765,共10页
为了尽可能寻找多峰函数的全部极值点及提高寻优精度,提出一种免疫云粒子群优化算法(PPSO)-融合云变异粒子群优化算法(CMPSO)的小波变异克隆选择算法(WMCSA)。PPSO混合算法设置了最大重复搜索代数M,以便尽可能搜索到全部极值点。在每一... 为了尽可能寻找多峰函数的全部极值点及提高寻优精度,提出一种免疫云粒子群优化算法(PPSO)-融合云变异粒子群优化算法(CMPSO)的小波变异克隆选择算法(WMCSA)。PPSO混合算法设置了最大重复搜索代数M,以便尽可能搜索到全部极值点。在每一代重复搜索中,首先,通过引入基于云模型的云变异算子以提高种群的多样性,并使用云变异粒子群优化算法对可行域内的所有极值点进行全局搜索;然后,利用小波变异克隆选择算法对云变异粒子群优化算法搜索到的较优解进行局部搜索以进一步提高解的精度。针对复杂多峰函数的寻优测试表明:在保证收敛速度的同时,PPSO算法的收敛精度和搜索到的极值点数目均得到显著提高。离散混沌系统的应用实例也表明了PPSO算法的有效性。 展开更多
关键词 多峰函数 粒子群优化 小波变异 克隆选择算法 云模型
在线阅读 下载PDF
平均计算时间复杂度优化的动态粒子群优化算法 被引量:11
13
作者 王沁 李磊 +1 位作者 陆成勇 孙富明 《计算机科学》 CSCD 北大核心 2010年第3期191-194,288,共5页
粒子群优化(PSO:Particle Swarm Optimization)算法已经被广泛地应用,其中包括大量实时性要求很高的领域,如宽带数字信号处理。传统PSO算法需要对大量粒子分别进行若干次迭代运算,这将导致该算法的平均计算时间复杂度较高,运算延时大,... 粒子群优化(PSO:Particle Swarm Optimization)算法已经被广泛地应用,其中包括大量实时性要求很高的领域,如宽带数字信号处理。传统PSO算法需要对大量粒子分别进行若干次迭代运算,这将导致该算法的平均计算时间复杂度较高,运算延时大,不能满足这种高实时性要求。因此,需要在不影响性能的前提下降低PSO算法的平均计算时间复杂度。提出了一种粒子数量可变的动态粒子群优化(DPSO:Dynamic PSO)算法,其核心是丢弃粒子判定条件,在迭代过程中,根据该条件动态地抛弃一些粒子,从而降低算法的平均计算时间复杂度。此外,在算法迭代过程中对粒子的个体极值进行变异,从而避免陷入局部最优解。实验和理论分析结果表明,在算法的平均计算时间复杂度方面,对于相同的优化结果,DPSO算法的平均计算时间复杂度比传统PSO算法降低了30%左右;在算法的性能方面,对于单峰值目标函数,DPSO算法与传统PSO算法的优化性能相当,而对于多峰值目标函数,DPSO算法的优化性能要优于传统PSO算法。 展开更多
关键词 平均计算时间复杂度 粒子群优化 动态 变异 多峰值函数优化
在线阅读 下载PDF
用于多峰函数优化的免疫粒子群网络算法 被引量:11
14
作者 薛文涛 吴晓蓓 徐志良 《系统工程与电子技术》 EI CSCD 北大核心 2009年第3期705-709,共5页
针对多峰函数优化问题,借鉴粒子群优化特性和免疫网络理论,提出一种免疫粒子群网络算法。该算法利用粒子群的信息共享和记忆功能,通过加强粒子对自身经历的认知,提高算法的局部搜索能力;采用动态网络抑制策略,保持种群的多样性,自适应... 针对多峰函数优化问题,借鉴粒子群优化特性和免疫网络理论,提出一种免疫粒子群网络算法。该算法利用粒子群的信息共享和记忆功能,通过加强粒子对自身经历的认知,提高算法的局部搜索能力;采用动态网络抑制策略,保持种群的多样性,自适应地调节粒子群的规模。多峰函数优化的仿真结果表明,该算法能有效地改善种群的多样性,较好地实现全局优化和局部优化的有机结合,具有更强的多峰函数优化能力。 展开更多
关键词 多峰优化 粒子群优化 免疫网络 局部优化
在线阅读 下载PDF
基于莱维飞行的粒子群优化算法 被引量:74
15
作者 王庆喜 郭晓波 《计算机应用研究》 CSCD 北大核心 2016年第9期2588-2591,共4页
为了有效解决粒子群优化算法易陷入局部最优的缺陷,在粒子群优化算法(PSO)的基础上引入莱维飞行,提出了一种基于莱维飞行的粒子群优化算法(LPSO)。该算法在迭代过程中对粒子位置进化效果进行判断,若粒子多次迭代后仍无法进化到更优位置... 为了有效解决粒子群优化算法易陷入局部最优的缺陷,在粒子群优化算法(PSO)的基础上引入莱维飞行,提出了一种基于莱维飞行的粒子群优化算法(LPSO)。该算法在迭代过程中对粒子位置进化效果进行判断,若粒子多次迭代后仍无法进化到更优位置,则使用莱维飞行更新粒子位置。改进后的算法增加了粒子位置变化的活力,提高了算法的有效性。仿真实验结果表明,该算法在求解全局最优时,效果优于原始粒子群优化算法,在多峰值函数优化问题中其优越性更加突出。 展开更多
关键词 粒子群搜索算法 莱维飞行 多峰函数
在线阅读 下载PDF
基于粒子群算法的跳频信号参数估计 被引量:10
16
作者 郭建涛 王宏远 余本海 《计算机应用研究》 CSCD 北大核心 2010年第2期512-514,共3页
针对基于时频分布的参数估计存在信噪比阈值和低信噪比下方差大的问题,提出了一种基于多峰优化粒子群算法的跳频信号参数估计新算法。该算法首先将跳频信号分解为时频原子的线性组合,然后由匹配原子获取跳频信号的参数估计。仿真结果表... 针对基于时频分布的参数估计存在信噪比阈值和低信噪比下方差大的问题,提出了一种基于多峰优化粒子群算法的跳频信号参数估计新算法。该算法首先将跳频信号分解为时频原子的线性组合,然后由匹配原子获取跳频信号的参数估计。仿真结果表明,基于改进的物种形成粒子群算法能够搜索到与跳频信号分量相匹配的原子,与平滑伪魏格纳分布相比,提出的参数估计算法在低信噪比下具有较小的估计方差,更加适宜于电子战的实际应用。 展开更多
关键词 跳频信号 参数估计 粒子群 多峰优化
在线阅读 下载PDF
基于改进小生境粒子群算法的多模函数优化 被引量:9
17
作者 史哲文 白雪石 郭禾 《计算机应用研究》 CSCD 北大核心 2012年第2期465-468,共4页
在基于粒子群算法的多模优化问题中,针对现存小生境方法需要特定参数的缺陷,提出了一种不需要参数的小生境算法。该算法通过粒子适应度在种群适应度中所占比例以及粒子之间的欧式距离两方面因素确定粒子的局部最优解,并通过每轮迭代中... 在基于粒子群算法的多模优化问题中,针对现存小生境方法需要特定参数的缺陷,提出了一种不需要参数的小生境算法。该算法通过粒子适应度在种群适应度中所占比例以及粒子之间的欧式距离两方面因素确定粒子的局部最优解,并通过每轮迭代中每个局部最优解粒子和以它作为局部最优解的普通粒子的欧式距离的平均值确定出该小生境的半径。在几个广泛的测试函数上的实验结果表明,该算法在收敛速度和成功率方面比需要小生境参数的算法(FERPSO、SPSO)更优秀。 展开更多
关键词 小生境 粒子群优化 多模函数 适应度 欧氏距离
在线阅读 下载PDF
多模态粒子群集成神经网络 被引量:4
18
作者 刘宇 覃征 +1 位作者 卢江 史哲文 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1519-1526,共8页
提出一种基于多模态粒子群算法的神经网络集成方法,在网络训练每个迭代周期内利用改进的快速聚类算法在权值搜索空间上动态地把搜索粒子分为若干类,求得每一类的最优粒子,然后计算最优个体两两之间的输出空间相异度,合并相异度过低的两... 提出一种基于多模态粒子群算法的神经网络集成方法,在网络训练每个迭代周期内利用改进的快速聚类算法在权值搜索空间上动态地把搜索粒子分为若干类,求得每一类的最优粒子,然后计算最优个体两两之间的输出空间相异度,合并相异度过低的两类粒子,最终形成不但权值空间相异、而且输出空间也相异的若干类粒子,每类粒子负责一个成员网络权值的搜索,其中最优粒子对应于一个成员网络,所有类的最优粒子组成神经网络集成,成员网络的个数是由算法自动确定的.算法控制网络多样性的方法更直接、更有效.与负相关神经网络集成、bagging和boosting方法比较,实验结果表明,此算法较好地提高了神经网络集成的泛化能力. 展开更多
关键词 神经网络集成 粒子群优化 减聚类 多模函数优化
在线阅读 下载PDF
一种求解带约束多式联运问题的群智能算法 被引量:4
19
作者 梁晓磊 李文锋 张煜 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1220-1230,共11页
针对如何有效运用群智能算法求解多式联运问题,设计了一种针对群智能优化算法的个体解码方式,提出了一个有效的个体编码与多式联运方案的映射模型.在该映射模型中设计了基于比例的流量分配方式,实现了个体编码信息向初步流量分配方式的... 针对如何有效运用群智能算法求解多式联运问题,设计了一种针对群智能优化算法的个体解码方式,提出了一个有效的个体编码与多式联运方案的映射模型.在该映射模型中设计了基于比例的流量分配方式,实现了个体编码信息向初步流量分配方式的解码;同时构建了局部流量调整策略,进行不可行方案修复,提高了解码方案的有效性.而后,提出了一种变邻域粒子群算法,将社会网络演化特征引入进行粒子群算法的种群拓扑和邻域调整,以改善个体在搜索过程中的交互模式.基于解码策略,采用改进算法对多式联运问题进行求解,并与3种新型群智能算法进行对比.通过实例分析,该编码策略可以有效应用于多式联运问题求解.同时,变邻域粒子群优化算法的收敛效率和性能优于对比算法. 展开更多
关键词 解码策略 群智能 粒子群 多式联运
在线阅读 下载PDF
一种有效的多峰函数优化算法 被引量:5
20
作者 李莉 李洪奇 谢绍龙 《计算机应用研究》 CSCD 北大核心 2008年第10期2973-2976,共4页
针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰的最优粒子飞行,进而搜索到每一座山峰... 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所有山峰。 展开更多
关键词 粒子群算法 多峰值函数 小生境技术 Sobol序列
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部