针对剪纸图像分类中文本与图像模态差异大、类原型表达能力弱的问题,提出了一种基于CLIP模型的文本特征增强方法(CLIP visual text enhancer,C-VTE)。该方法通过人工提示模板提取文本特征,设计了一种视觉文本增强模块,并利用Cross Atten...针对剪纸图像分类中文本与图像模态差异大、类原型表达能力弱的问题,提出了一种基于CLIP模型的文本特征增强方法(CLIP visual text enhancer,C-VTE)。该方法通过人工提示模板提取文本特征,设计了一种视觉文本增强模块,并利用Cross Attention和比例残差进行连接和融合图像特征与文本特征,以减小模态差异,增强类别特征表达能力。在剪纸数据集及Caltech101等4个公开数据集上进行了实验,验证其有效性:在剪纸数据集的基类分类任务中,C-VTE平均准确率达到了72.51%,较现有方法提升3.14百分点;在公开数据集的小样本分类任务中,平均准确率达到了84.78%,提升2.45百分点。消融实验表明,模态融合模块与比例残差对性能提升影响显著。该方法为视觉语言大模型在下游分类任务中的高效适配提供了新思路,尤其适用于小样本与基类主导的场景。展开更多
大语言模型(Large Language Models,LLMs)和多模态模型(Multimodal Models,MMLs)通过整合文本、图像、语音等多模态数据,为临床诊断、个性化治疗及慢性病管理提供了全新的技术支持。本文系统梳理了LLMs和MMLs的技术基础及其在临床医学...大语言模型(Large Language Models,LLMs)和多模态模型(Multimodal Models,MMLs)通过整合文本、图像、语音等多模态数据,为临床诊断、个性化治疗及慢性病管理提供了全新的技术支持。本文系统梳理了LLMs和MMLs的技术基础及其在临床医学中的应用场景,包括临床诊断与决策支持、个性化医疗、慢性病管理等领域,探讨了其在提升诊断准确性、优化治疗方案及改善患者健康管理等方面的潜力与局限性。同时,深入分析了LLMs和MMLs在医疗领域面临的技术挑战,包括模型泛化能力不足、可解释性与透明性欠缺、隐私与数据安全风险,以及与现有医疗系统的兼容性问题,并阐述了这些挑战对技术落地和推广的影响。最后,本文展望了模型优化、数据融合及隐私保护等方面的发展方向,提出通过技术创新与跨领域协作,推动人工智能(Artificial Intelligence,AI)技术在医学领域的深度应用,为提升医疗服务效率和质量提供参考。展开更多
文摘针对剪纸图像分类中文本与图像模态差异大、类原型表达能力弱的问题,提出了一种基于CLIP模型的文本特征增强方法(CLIP visual text enhancer,C-VTE)。该方法通过人工提示模板提取文本特征,设计了一种视觉文本增强模块,并利用Cross Attention和比例残差进行连接和融合图像特征与文本特征,以减小模态差异,增强类别特征表达能力。在剪纸数据集及Caltech101等4个公开数据集上进行了实验,验证其有效性:在剪纸数据集的基类分类任务中,C-VTE平均准确率达到了72.51%,较现有方法提升3.14百分点;在公开数据集的小样本分类任务中,平均准确率达到了84.78%,提升2.45百分点。消融实验表明,模态融合模块与比例残差对性能提升影响显著。该方法为视觉语言大模型在下游分类任务中的高效适配提供了新思路,尤其适用于小样本与基类主导的场景。
文摘大语言模型(Large Language Models,LLMs)和多模态模型(Multimodal Models,MMLs)通过整合文本、图像、语音等多模态数据,为临床诊断、个性化治疗及慢性病管理提供了全新的技术支持。本文系统梳理了LLMs和MMLs的技术基础及其在临床医学中的应用场景,包括临床诊断与决策支持、个性化医疗、慢性病管理等领域,探讨了其在提升诊断准确性、优化治疗方案及改善患者健康管理等方面的潜力与局限性。同时,深入分析了LLMs和MMLs在医疗领域面临的技术挑战,包括模型泛化能力不足、可解释性与透明性欠缺、隐私与数据安全风险,以及与现有医疗系统的兼容性问题,并阐述了这些挑战对技术落地和推广的影响。最后,本文展望了模型优化、数据融合及隐私保护等方面的发展方向,提出通过技术创新与跨领域协作,推动人工智能(Artificial Intelligence,AI)技术在医学领域的深度应用,为提升医疗服务效率和质量提供参考。