As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ...As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.展开更多
Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is propose...Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.展开更多
Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic a...Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy eval...Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy evaluation method is researched,thus the applicability of each algorithm is obtained.Firstly,the naval ship synthesis model is introduced to design process,value and application status of synthesis model in integrated design is then exposed.Then the applicability of single target and multi targets SA algorithm is improved,and the quick generation of naval ship projects is done.After that,multiple projects evaluation method based on Vague fuzzy set is introduced to established the intelligent evaluation model,which can integrate effectively the quantitative and qualitative indexes.At last,the analysis of results comparison shows the advancement and rationality of each method.The example shows the integrated design process researched in this paper can be a great orientation of naval ship project design,and can also be used in other parts of naval ship development.展开更多
文摘As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
文摘Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.
基金This project was supported by the High Technology Research and Development Programme of China (2002AA111040).
文摘Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
基金supported by “The Fundamental Research Funds for the Central Universities”(3132014318)
文摘Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy evaluation method is researched,thus the applicability of each algorithm is obtained.Firstly,the naval ship synthesis model is introduced to design process,value and application status of synthesis model in integrated design is then exposed.Then the applicability of single target and multi targets SA algorithm is improved,and the quick generation of naval ship projects is done.After that,multiple projects evaluation method based on Vague fuzzy set is introduced to established the intelligent evaluation model,which can integrate effectively the quantitative and qualitative indexes.At last,the analysis of results comparison shows the advancement and rationality of each method.The example shows the integrated design process researched in this paper can be a great orientation of naval ship project design,and can also be used in other parts of naval ship development.