Bubbles play crucial roles in various fields,including naval and ocean engineering,chemical engineering,and biochemical engineering.Numerous theoretical analyses,numerical simulations,and experimental studies have bee...Bubbles play crucial roles in various fields,including naval and ocean engineering,chemical engineering,and biochemical engineering.Numerous theoretical analyses,numerical simulations,and experimental studies have been conducted to reveal the mysteries of bubble motion and its mechanisms.These efforts have significantly advanced research in bubble dynamics,where theoretical study is an efficient method for bubble motion prediction.Since Lord Rayleigh introduced the theoretical model of single-bubble motion in incompressible fluid in 1917,theoretical studies have been pivotal in understanding bubble dynamics.This study provides a comprehensive review of the development and applicability of theoretical studies in bubble dynamics using typical theoretical bubble models across different periods as a focal point and an overview of bubble theory applications in underwater explosion,marine cavitation,and seismic exploration.This study aims to serve as a reference and catalyst for further advancements in theoretical analysis and practical applications of bubble theory across marine fields.展开更多
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (...Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.展开更多
Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the s...Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.展开更多
The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain c...The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain channels, delta-front river mouth bars and tidal channels are well developed. The sandstones are distributed on or between the genetic source rocks, forming good gas source conditions with widespread subtle lithologic gas pools of low porosity, low permeability, low pressure and low abundance. In recent years, a series of experiments has been done, aimed at overcoming difficulties in the exploration of lithologic gas pools. A set of exploration techniques, focusing on geological appraisal, seismic exploration, accurate logging evaluation and interpretation, well testing fracturing, has been developed to guide the exploration into the upper Paleozoic in the basin, leading to the discoveries of four large gas fields: Sulige, Yulin, Wushenqi and Mizhi.展开更多
Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the...Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.展开更多
In this paper, we propose the statistical space mapping thought and classify the seismic body space throughlithology space clustering combining to the actual application background of petroleum exploration. A new meth...In this paper, we propose the statistical space mapping thought and classify the seismic body space throughlithology space clustering combining to the actual application background of petroleum exploration. A new method ofstratum petroleum recognition based on neural network was set up through the foundation of the data mapping relationbetween log and seismic body. It can break a new path for recognition petroleum using both log and seismic data. Andthis method has been validated in the practical data analysis in Liaohe oil field.展开更多
地质断层作为储层油气聚集和运移的重要通道,是评价储层特征和圈闭性的重要指标,也是储气库构造样式选择的先决条件。然而,从地震图像资料中识别断层存在依赖专家知识、时效性差和多解性强等问题。近年来,以深度学习和大模型技术为代表...地质断层作为储层油气聚集和运移的重要通道,是评价储层特征和圈闭性的重要指标,也是储气库构造样式选择的先决条件。然而,从地震图像资料中识别断层存在依赖专家知识、时效性差和多解性强等问题。近年来,以深度学习和大模型技术为代表的人工智能方法,凭借其高效的非线性数据分析能力极大地改变了传统工业任务范式。鉴于此,提出一种基于增强域数据微调Yolo(You Only Look Once)模型的断层智能识别方法。首先,针对现场数据稀疏问题,使用基于强化学习的图像自增强算法,通过下游任务需求定向训练优化算法,实现地震体图像最优增强组合方案;然后,根据地质领域专家知识,在三维地震图像中确定能有效表征断块的高阶特征;通过进一步搭建基于预训练Yolo模型的断层识别模型,输入实测-增强图像数据进行领域数据微调训练,从而建立断层智能识别模型;最后,将现场三维地震数据输入到训练好的断层智能识别模型中,提取被分割、识别、标注和计算的断层特征。以中国中部地区某储气库建设运营地块为例,该方法能在不过多依赖人工介入的情况下高效识别储层断层。本研究适用于地震勘探断层识别任务,能为储气库合理选址提供智能化解决方案。展开更多
文摘Bubbles play crucial roles in various fields,including naval and ocean engineering,chemical engineering,and biochemical engineering.Numerous theoretical analyses,numerical simulations,and experimental studies have been conducted to reveal the mysteries of bubble motion and its mechanisms.These efforts have significantly advanced research in bubble dynamics,where theoretical study is an efficient method for bubble motion prediction.Since Lord Rayleigh introduced the theoretical model of single-bubble motion in incompressible fluid in 1917,theoretical studies have been pivotal in understanding bubble dynamics.This study provides a comprehensive review of the development and applicability of theoretical studies in bubble dynamics using typical theoretical bubble models across different periods as a focal point and an overview of bubble theory applications in underwater explosion,marine cavitation,and seismic exploration.This study aims to serve as a reference and catalyst for further advancements in theoretical analysis and practical applications of bubble theory across marine fields.
基金National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKJ202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.
基金Supported by the Sinopec Ministry of Science and Technology Project(P21038-3)。
文摘Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.
文摘The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain channels, delta-front river mouth bars and tidal channels are well developed. The sandstones are distributed on or between the genetic source rocks, forming good gas source conditions with widespread subtle lithologic gas pools of low porosity, low permeability, low pressure and low abundance. In recent years, a series of experiments has been done, aimed at overcoming difficulties in the exploration of lithologic gas pools. A set of exploration techniques, focusing on geological appraisal, seismic exploration, accurate logging evaluation and interpretation, well testing fracturing, has been developed to guide the exploration into the upper Paleozoic in the basin, leading to the discoveries of four large gas fields: Sulige, Yulin, Wushenqi and Mizhi.
基金Supported by the National Natural Science Foundation of China (72088101)。
文摘Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.
文摘In this paper, we propose the statistical space mapping thought and classify the seismic body space throughlithology space clustering combining to the actual application background of petroleum exploration. A new method ofstratum petroleum recognition based on neural network was set up through the foundation of the data mapping relationbetween log and seismic body. It can break a new path for recognition petroleum using both log and seismic data. Andthis method has been validated in the practical data analysis in Liaohe oil field.
文摘地质断层作为储层油气聚集和运移的重要通道,是评价储层特征和圈闭性的重要指标,也是储气库构造样式选择的先决条件。然而,从地震图像资料中识别断层存在依赖专家知识、时效性差和多解性强等问题。近年来,以深度学习和大模型技术为代表的人工智能方法,凭借其高效的非线性数据分析能力极大地改变了传统工业任务范式。鉴于此,提出一种基于增强域数据微调Yolo(You Only Look Once)模型的断层智能识别方法。首先,针对现场数据稀疏问题,使用基于强化学习的图像自增强算法,通过下游任务需求定向训练优化算法,实现地震体图像最优增强组合方案;然后,根据地质领域专家知识,在三维地震图像中确定能有效表征断块的高阶特征;通过进一步搭建基于预训练Yolo模型的断层识别模型,输入实测-增强图像数据进行领域数据微调训练,从而建立断层智能识别模型;最后,将现场三维地震数据输入到训练好的断层智能识别模型中,提取被分割、识别、标注和计算的断层特征。以中国中部地区某储气库建设运营地块为例,该方法能在不过多依赖人工介入的情况下高效识别储层断层。本研究适用于地震勘探断层识别任务,能为储气库合理选址提供智能化解决方案。