The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
针对现有Laplacian模型不能精确描述相关噪声分布,分布式视频编码(Distributed Video Coding,DVC)的率失真性能改善非常有限,文中提出一种基于高斯混合模型的分布式视频编码方法.首先分析了WZ帧与相应边信息之间相关噪声的统计特征,发...针对现有Laplacian模型不能精确描述相关噪声分布,分布式视频编码(Distributed Video Coding,DVC)的率失真性能改善非常有限,文中提出一种基于高斯混合模型的分布式视频编码方法.首先分析了WZ帧与相应边信息之间相关噪声的统计特征,发现相关噪声信息的分布并不满足某种单峰分布,然后采用高斯混合模型(Gaussian Mixture Model,GMM)对噪声系数直方图进行拟合,提出基于样本特征的EM(Expectation Maximum)算法来估计模型参数.将提出的高斯混合相关噪声模型与相应的Laplacian模型进行比较,实验结果表明前者更能精确描述相关噪声的统计特征,基于该模型的DVC率失真性能优于基于Laplacian模型的DISCOVER方案,获得的平均增益接近1dB.展开更多
与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统...与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。展开更多
分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息...分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息作为参考,而当本帧邻域块含有较多纹理和细节时,算法性能有待提高。为此,对非局部相似性的思想进行改进,提出基于加权非局部相似性的分布式视频压缩感知多假设重构算法。在该算法中,对大变化块中的纹理块采用加权非局部相似性在相邻已重构帧中寻找自相似块,最终生成辅助重构信息块;对于非纹理块,则简单利用加权非局部相似性生成相似块。对不同特点的视频序列的仿真实验结果表明,改进后的算法有效改善了视频序列的重构质量,具有较优的重构SSIM,PSNR指标,其中PSNR约提高1dB。展开更多
针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第...针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。展开更多
基金Supported by National Natural Science Foundation of China(61170147) Major Cooperation Project of Production and College in Fujian Province(2012H61010016) Natural Science Foundation of Fujian Province(2013J01234)
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.
文摘与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。
文摘分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)多假设重构算法将传统视频编码中的多假设预测运动估计思想引入到分布式压缩感知视频编码系统中,改善了对视频序列的重构质量。在该算法中,大变化块采用本帧邻域块信息作为参考,而当本帧邻域块含有较多纹理和细节时,算法性能有待提高。为此,对非局部相似性的思想进行改进,提出基于加权非局部相似性的分布式视频压缩感知多假设重构算法。在该算法中,对大变化块中的纹理块采用加权非局部相似性在相邻已重构帧中寻找自相似块,最终生成辅助重构信息块;对于非纹理块,则简单利用加权非局部相似性生成相似块。对不同特点的视频序列的仿真实验结果表明,改进后的算法有效改善了视频序列的重构质量,具有较优的重构SSIM,PSNR指标,其中PSNR约提高1dB。
文摘针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。