Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework ...Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.展开更多
针对超宽带定位系统在多用户和弱信号环境下接收端易出现码间串扰(inter symbol interference,ISI)和多用户干扰(multiuser interference,MUI)等问题,提出一种基于修正最小均方误差估计(minimum mean square error estimation,MMSE)的...针对超宽带定位系统在多用户和弱信号环境下接收端易出现码间串扰(inter symbol interference,ISI)和多用户干扰(multiuser interference,MUI)等问题,提出一种基于修正最小均方误差估计(minimum mean square error estimation,MMSE)的自适应迭代算法进行超宽带(ultra-wideband,UWB)脉冲设计。该算法选取修正Hermite多项式(modefied Hermite polynomial,MHP)作为脉冲设计基函数。通过分析MHP的时频特性对最小均方误差估计准则下组合脉冲的各阶MHP系数进行修正,在此基础上根据组合脉冲功率谱密度与美国联邦通讯委员会(federal communications commission,FCC)辐射掩蔽之间的拟合程度设计自适应算法,对组合脉冲进行自适应调整实现脉冲设计。仿真结果表明该方案获得的脉冲有较高功率利用率,同时在多用户接入和弱信号检测方面也具备很强的适用性。展开更多
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
文摘Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.