With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the ve...With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins ...The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission ...Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied.Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example,a path planning method based on Dubins trajectory and particle swarm optimization(PSO)algorithm is presented in this paper.The mathematic model of multiple UAVs formation reconfiguration was built firstly.According to the kinematic model of aerial vehicles,a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory.The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning.Finally,the simulation and vehicles flight experiment are executed.Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time,to guarantee the rapidity and effectiveness of formation reconfigurations.Furthermore,from the simulation results,the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us...This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight.展开更多
Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of t...Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of task environment greatly increase the complexity and difficulty of the UAV swarm cooperative search-attack mission planning problem.Inspired by the collaborative hunting behavior of wolf pack,a distributed selforganizing method for UAV swarm search-attack mission planning is proposed.First,to solve the multi-target search problem in unknown environments,a wolf scouting behavior-inspired cooperative search algorithm for UAV swarm is designed.Second,a distributed self-organizing task allocation algorithm for UAV swarm cooperative attacking of targets is proposed by analyzing the flexible labor division behavior of wolves.By abstracting the UAV as a simple artificial wolf agent,the flexible motion planning and group task coordinating for UAV swarm can be realized by self-organizing.The effectiveness of the proposed method is verified by a set of simulation experiments,the stability and scalability are evaluated,and the integrated solution for the coupled path planning and task allocation problems for the UAV swarm cooperative search-attack task can be well performed.展开更多
In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that consider...In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that considers regional risk assessment is proposed.Firstly,the low-altitude airspace is discretized based on rasterization,and then the UAV operating characteristics and environmental characteristics are combined to quantify the risk value in the low-altitude airspace to obtain a 3D risk map.The path risk value is taken as the cost,the particle swarm optimization-beetle antennae search(PSO-BAS)algorithm is used to plan the spatial 3D route,and it effectively reduces the generated path redundancy.Finally,cubic B-spline curve is used to smooth the planned discrete path.A flyable path with continuous curvature and pitch angle is generated.The simulation results show that the generated path can exchange for a path with a lower risk value at a lower path cost.At the same time,the path redundancy is low,and the curvature and pitch angle continuously change.It is a flyable path that meets the UAV performance constraints.展开更多
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission...This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza...针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2024JBZX038)the National Natural Science Foundation of China(62076023).
文摘With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金Project(61120106010)supported by the Projects of Major International(Regional)Joint Research Program Nature Science Foundation of ChinaProject(61304215,61203078)supported by National Natural Science Foundation of China+1 种基金Project(2013000704)supported by the Beijing Outstanding Ph.D.Program Mentor,ChinaProject(61321002)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
基金Project (61703414) supported by the National Natural Science Foundation of ChinaProject (3101047) supported by the Defense Science and Technology Foundation of China+1 种基金Project (2017JJ3366) supported by the Natural Science Foundation of Hunan ChinaProject (2015M582881) supported by the China Postdoctoral Science Foundation
文摘Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied.Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example,a path planning method based on Dubins trajectory and particle swarm optimization(PSO)algorithm is presented in this paper.The mathematic model of multiple UAVs formation reconfiguration was built firstly.According to the kinematic model of aerial vehicles,a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory.The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning.Finally,the simulation and vehicles flight experiment are executed.Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time,to guarantee the rapidity and effectiveness of formation reconfigurations.Furthermore,from the simulation results,the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金supported in part by the National Natural Science Foundation of China under Grant U2013201in part by the Key R & D projects (Social Development) in Jiangsu Province of China under Grant BE2020704
文摘This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight.
基金supported by the National Natural Science Foundation of China(61502534)the Shaanxi Provincial Natural Science Foundation(2020JQ-493)+2 种基金the Integrative Equipment Research Project of Armed Police Force(WJ20211A030018)the Military Science Project of the National Social Science Fund(WJ2019-SKJJ-C-092)the Theoretical Research Foundation of Armed Police Engineering University(WJY202148)。
文摘Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of task environment greatly increase the complexity and difficulty of the UAV swarm cooperative search-attack mission planning problem.Inspired by the collaborative hunting behavior of wolf pack,a distributed selforganizing method for UAV swarm search-attack mission planning is proposed.First,to solve the multi-target search problem in unknown environments,a wolf scouting behavior-inspired cooperative search algorithm for UAV swarm is designed.Second,a distributed self-organizing task allocation algorithm for UAV swarm cooperative attacking of targets is proposed by analyzing the flexible labor division behavior of wolves.By abstracting the UAV as a simple artificial wolf agent,the flexible motion planning and group task coordinating for UAV swarm can be realized by self-organizing.The effectiveness of the proposed method is verified by a set of simulation experiments,the stability and scalability are evaluated,and the integrated solution for the coupled path planning and task allocation problems for the UAV swarm cooperative search-attack task can be well performed.
基金supported by the National Natural Science Foundation of China(61601497)the Natural Science Basic Research Plan in Shaanxi Province of China(2022JM-412)the Air Force Engineering University Principal Fund(XZJ2020005).
文摘In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that considers regional risk assessment is proposed.Firstly,the low-altitude airspace is discretized based on rasterization,and then the UAV operating characteristics and environmental characteristics are combined to quantify the risk value in the low-altitude airspace to obtain a 3D risk map.The path risk value is taken as the cost,the particle swarm optimization-beetle antennae search(PSO-BAS)algorithm is used to plan the spatial 3D route,and it effectively reduces the generated path redundancy.Finally,cubic B-spline curve is used to smooth the planned discrete path.A flyable path with continuous curvature and pitch angle is generated.The simulation results show that the generated path can exchange for a path with a lower risk value at a lower path cost.At the same time,the path redundancy is low,and the curvature and pitch angle continuously change.It is a flyable path that meets the UAV performance constraints.
基金supported by the National Natural Science Foundation of China(7140104871671059)the National Natural Science Funds of China for Innovative Research Groups(71521001)
文摘This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.