Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st...Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机...近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LSSSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we pro...A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.展开更多
基金supported by the National Natural Science Foundation of China(41774006)the Comparative Study of Geo-environment and Geohazards in the Yangtze River Delta and the Red River Delta Projectthe Shanghai Science and Technology Development Foundation(20dz1201200)。
文摘Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
文摘近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LSSSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金supported by the National Natural Science Foundation of China(6200220861572063+1 种基金61603225)the Natural Science Foundation of Shandong Province(ZR2016FQ04)。
文摘A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.