期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于多任务门控网络的滚动轴承寿命预测方法 被引量:1
1
作者 宋浏阳 郑传浩 +3 位作者 金烨 林天骄 韩长坤 王华庆 《中国舰船研究》 北大核心 2025年第2期107-117,共11页
[目的]为实现船舶机械设备中轴承的剩余寿命预测,提出基于双向门控循环单元(BiGRU)、变分自编码器(VAE)和多门控专家混合层(MMoE)的多任务门控网络预测模型。[方法]首先,计算轴承信号时域特征以表征监测数据中的基本退化趋势;然后,建立... [目的]为实现船舶机械设备中轴承的剩余寿命预测,提出基于双向门控循环单元(BiGRU)、变分自编码器(VAE)和多门控专家混合层(MMoE)的多任务门控网络预测模型。[方法]首先,计算轴承信号时域特征以表征监测数据中的基本退化趋势;然后,建立轴承健康状态(HS)评估和剩余使用寿命(RUL)预测子任务构成多任务门控网络预测模型,子任务中使用BiGRU和VAE提取时域特征趋势信号中的退化信息,再利用MMoE自适应分离子任务的差异特征。最后,在XJTU-SY轴承数据集上进行有效性验证。[结果]结果表明,与长短期记忆网络(LSTM)等经典时序数据预测模型相比,多任务门控网络预测模型的预测精度更高,误差指标MAE和RMSE分别提升62.5%和67.81%。[结论]所提方法可以实现轴承剩余寿命的预测,对船舶机械设备健康管理与智能运维具有一定的参考价值。 展开更多
关键词 船舶设备 轴承 剩余寿命预测 多任务门控网络预测模型
在线阅读 下载PDF
基于GRU-NN预测模型的压电作动器MPC-KAN控制方法 被引量:1
2
作者 郭辰星 李自成 徐瑞瑞 《压电与声光》 北大核心 2025年第1期157-162,171,共7页
为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型... 为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型预测控制(MPC)的输出。首先,根据线性化模型选择GRU-NN的训练输入特征,并训练该网络。然后,为了提高优化效果和缩短优化时间,将麻雀搜索算法(SSA)用作MPC优化器,并建立Kolmogorov-Arnold网络(KAN)以替代SSA优化。该方法的有效性在PEAs平台上得到验证,与传统方法相比,控制精度提高了约30%。 展开更多
关键词 压电陶瓷作动器 高精度跟踪 模型预测控制 GRU网络 KAN网络
在线阅读 下载PDF
基于多源信息融合的新安江模型与深度学习集合的可解释径流预测研究
3
作者 许楠楠 王兆才 +1 位作者 裴仁林 吴俊豪 《水文》 北大核心 2025年第5期68-76,共9页
针对径流预测中单一模型难以兼顾物理机制解释性与复杂环境适应性的问题,提出一种水文机理与深度学习相结合的混合预测模型XAJ-TCN-GRU&XGBoost(XTGX)。首先利用最大互信息系数(MIC)从水文与遥感卫星气象数据中筛选关键变量。进而,... 针对径流预测中单一模型难以兼顾物理机制解释性与复杂环境适应性的问题,提出一种水文机理与深度学习相结合的混合预测模型XAJ-TCN-GRU&XGBoost(XTGX)。首先利用最大互信息系数(MIC)从水文与遥感卫星气象数据中筛选关键变量。进而,基于水文机理的新安江模型与捕捉时序特征的TCN-GRU模型分别生成径流预测,前者解析物理过程,后者挖掘数据深层规律。最终,利用XGBoost构建非线性权重分配机制,动态融合两类模型的互补优势,提升预测精度。研究表明:XTGX在洛清江和赤水河径流预测和洪水预报方面优于单一基准模型,纳什效率系数分别达到0.981和0.957。研究结果可为水资源管理和中小河流洪水灾害防治提供参考。 展开更多
关键词 径流预测 新安江模型 时间卷积网络 门控循环单元 极端梯度提升 遥感卫星反演
在线阅读 下载PDF
基于LSTM-GRU-Attention模型的管道直饮水月供水量预测
4
作者 刘颖 刘治学 +5 位作者 郭广丰 刘保卫 杜帅帅 王鹏渊 张新田 赵继然 《水资源与水工程学报》 北大核心 2025年第3期116-124,共9页
管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆... 管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆(LSTM)、门控循环单元(GRU)与注意力机制(Attention)的LSTM-GRU-Attention预测模型。该模型通过贝叶斯优化算法确定最优超参数,并将外部因素如气温等与历史月供水量数据一起作为输入时间序列,借助Attention机制,模型能够对输入序列中的不同时间步进行加权处理,从而更准确地捕捉供水量的波峰和波谷值。结果表明:与单独使用LSTM、GRU及LSTM-GRU模型相比,LSTM-GRU-Attention模型在预测精度上有显著提升,平均绝对百分比误差(MAPE)达到了6.89%,较其他3种模型分别降低了7.74%、6.29%和5.23%,同时收敛速度更快。LSTM-GRU-Attention模型在高效预测管道直饮水月供水量方面展现了显著的效果,有助于直饮水企业合理安排生产计划、降低运营成本及提升管理水平,显示出较高的应用价值。 展开更多
关键词 管道直饮水 月供水量预测 长短期记忆网络 门控循环单元 LSTM-GRU-Attention模型
在线阅读 下载PDF
结合神经网络与模型预测控制的燃机运行扰动抑制研究
5
作者 张玉豪 王子楠 +1 位作者 曾博洋 田震 《推进技术》 北大核心 2025年第10期229-243,共15页
本文针对燃气轮机中氢燃料的扰动带来的控制问题,首先针对PI控制器利用改进的差分算法对控制器参数进行优化,以提高其动态性能及抗扰动效果。在此基础上,进一步选用智能控制方法进行研究,提出了一种结合门控循环单元与混沌神经网络的模... 本文针对燃气轮机中氢燃料的扰动带来的控制问题,首先针对PI控制器利用改进的差分算法对控制器参数进行优化,以提高其动态性能及抗扰动效果。在此基础上,进一步选用智能控制方法进行研究,提出了一种结合门控循环单元与混沌神经网络的模型预测控制器(GRU-CNN-MPC)。采用门控循环单元(GRU)构建非线性预测模型,并结合混沌神经网络(CNN)进行滚动优化以增强全局寻优能力。仿真结果表明,GRU-CNN-MPC控制方法相对于差分进化算法整定参数的PI控制器显著提升了系统的跟踪性能,在燃料短时阶跃和周期性供应不稳定的情况下,可大幅降低扰动幅值并缩短调节时间。其中,扰动幅度最大可降低75.00%,调节时间最多可缩短91.18%,展现出更优的扰动抑制效果。该方法为燃气轮机提供了更精准、快速的转速控制方案,满足了复杂工况下的控制需求。 展开更多
关键词 氢燃气轮机 燃料扰动 模型预测控制 门控循环单元 混沌神经网络
在线阅读 下载PDF
基于GCN-GRU-ATT的云平台资源负载预测
6
作者 赵旭辉 傅颖勋 马礼 《计算机工程与设计》 北大核心 2025年第8期2403-2409,共7页
云计算技术的广泛应用使资源负载预测对云服务的高效稳定运行至关重要,为解决传统方法难以应对动态复杂性的问题,提出了混合预测模型GCN-GRU-ATT。该模型融合了图卷积网络(GCN)和门控循环单元(GRU),并引入注意力机制,有效提升了预测准... 云计算技术的广泛应用使资源负载预测对云服务的高效稳定运行至关重要,为解决传统方法难以应对动态复杂性的问题,提出了混合预测模型GCN-GRU-ATT。该模型融合了图卷积网络(GCN)和门控循环单元(GRU),并引入注意力机制,有效提升了预测准确性和模型适应性。通过深入分析云资源间的复杂拓扑关系并处理资源使用的时间序列数据,GCN-GRU-ATT在资源需求波动大和系统动态复杂的情况下显著优化了资源分配和管理。实验结果表明,与LSTM、RNN、ARIMA-LSTM和CNN-LSTM模型相比,GCN-GRU-ATT在多个关键性能指标上表现优异。 展开更多
关键词 云计算 资源负载预测 图卷积网络 门控循环单元 注意力机制 混合预测模型 动态复杂性 时间序列数据
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
7
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:6
8
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
在线阅读 下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:18
9
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
在线阅读 下载PDF
基于VMD-TCN-GRU模型的水质预测研究 被引量:8
10
作者 项新建 许宏辉 +4 位作者 谢建立 丁祎 胡海斌 郑永平 杨斌 《人民黄河》 CAS 北大核心 2024年第3期92-97,共6页
为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此... 为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此类研究中常见的SVR(支持向量回归)、LSTM(长短期记忆神经网络)、TCN和CNN-LSTM(卷积神经网络-长短期记忆神经网络)这4种模型预测结果对比表明:VMD-TCN-GRU模型能更好挖掘水质数据在短时震荡过程中的特征信息,提升水质预测精度;VMD-TCN-GRU模型的MAE(平均绝对误差)、RMSE(均方根误差)下降,R^(2)(确定系数)提高,其MAE、RMSE、R^(2)分别为0.0553、0.0717、0.9351;其预测性能优越,预测精度更高且拥有更强的泛化能力,可以应用于汾河水质预测。 展开更多
关键词 水质预测 混合模型 变分模态分解 卷积时间神经网络 门控循环单元 时间序列 汾河
在线阅读 下载PDF
融合距离阈值和双向TCN的时空注意力行人轨迹预测模型 被引量:3
11
作者 王红霞 聂振凯 钟强 《计算机应用研究》 CSCD 北大核心 2024年第11期3303-3310,共8页
为解决因缺乏部分行人建模思想、缺少时间维度的全局视野和忽略行人交互模式多样性,而导致交互建模不充分、低预测精度等问题,提出基于Social-STGCNN(social spatio-temporal graph convolutional neural network)的改进模型STG-DTBTA(s... 为解决因缺乏部分行人建模思想、缺少时间维度的全局视野和忽略行人交互模式多样性,而导致交互建模不充分、低预测精度等问题,提出基于Social-STGCNN(social spatio-temporal graph convolutional neural network)的改进模型STG-DTBTA(spatio-temporal graph distance threshold Bi-TCN attention)。首先,构建PPM(partial pedestrian module)模块,对不满足距离阈值等约束条件的行人交互连接剪枝以去噪。其次,引入时空注意力机制,空间注意力动态分配交互权重,并设置多个注意力头以处理交互多样性问题;时间注意力捕捉时序数据的时间依赖关系。最后,采用双向TCN增加全局视野以捕捉轨迹数据中的动态模式和趋势,并采用门控机制融合双向特征。在ETH和UCY数据集上的实验结果表明,与Social-STGCNN相比,STG-DTBTA在维持参数量与推理时间接近的情况下,ADE平均降低8%,FDE平均降低16%。STG-DTBTA具有良好的交互建模能力、模型性能和预测效果。 展开更多
关键词 行人轨迹预测 部分行人建模 距离阈值 时空注意力机制 双向TCN 门控机制
在线阅读 下载PDF
基于循环神经网络模型的创伤重症患者临床结局的动态预测 被引量:3
12
作者 齐戈尧 徐进 金志超 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1241-1249,共9页
目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患... 目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患者院内结局为预测目标,使用长短时记忆(LSTM)和门控循环单元(GRU)2种RNN算法分别在4、6和8 h时间窗下训练动态预测模型。使用灵敏度、特异度、F1值和AUC值对模型性能进行评价,并分析不同RNN算法和时间窗对模型性能的影响。在8 h时间窗下分别训练隐马尔科夫模型(HMM)、随机森林(RF)模型和logistic模型作为对照,横向比较2种RNN算法模型与对照模型的性能指标,并分析各模型的时间趋势变化。结果 在不同时间窗时,RNN动态模型在灵敏度、特异度、F1值和AUC值等4个性能指标上差异均有统计学意义(均P<0.001),在8 h时间窗时模型的各性能指标均高于6 h和4 h时;不同RNN算法(LSTM和GRU)间仅特异度差异有统计学意义(P=0.036)。横向比较结果显示,2种RNN算法模型和其他模型间各性能指标差异均有统计学意义(均P<0.001),2种RNN算法模型各指标均高于HMM、RF和logistic模型;各算法模型灵敏度、特异度和F1值的ICC均小于0.400(95% CI未包含0),而AUC值的ICC在统计学上证据不足(95% CI包含0)。结论 基于RNN算法的动态模型对创伤重症患者临床结局的预测效果较其他常见模型具有一定优势,且时间窗对模型性能可能存在影响。 展开更多
关键词 循环神经网络 长短期记忆网络 门控循环单元 创伤 动态模型 临床结局 预测模型
在线阅读 下载PDF
基于卷积门控循环单元的波浪发电系统输出功率预测 被引量:1
13
作者 吴凡曈 杨俊华 +3 位作者 杨梦丽 林炳骏 梁惠溉 邱达磊 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期682-688,共7页
为高效准确预测波浪输出功率,提出卷积神经网络和门控循环单元混合模型波浪预测算法。采用间接预测方法,搭建直驱式波浪发电系统模型,运用CORREL函数分析不同波浪特征的相关性,结合卷积神经网络提取特征与高维空间中的波高关系,构造特... 为高效准确预测波浪输出功率,提出卷积神经网络和门控循环单元混合模型波浪预测算法。采用间接预测方法,搭建直驱式波浪发电系统模型,运用CORREL函数分析不同波浪特征的相关性,结合卷积神经网络提取特征与高维空间中的波高关系,构造特征向量,通过门控循环单元网络进行训练,将全连接层的输出值经反归一化后获得预测波高值,输入所搭建模型,获得波浪输出功率预测值。仿真结果表明,与其他网络模型相比,在多特征输入情况下,混合模型波浪预测算法预测效率更高、精度更准确。 展开更多
关键词 间接预测 波浪发电系统 卷积神经网络 门控循环单元 多特征输入 混合模型
在线阅读 下载PDF
基于CNN BiGRU RF模型的TBM掘进参数预测研究 被引量:1
14
作者 王海宾 王永涛 +3 位作者 陈黎涵 侯正涛 刘江 丁自伟 《中国煤炭》 北大核心 2024年第9期80-91,共12页
作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神... 作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神经网络(CNN)优化的双向门控循环单元(BiGRU)神经网络并通过随机森林(RF)进行集成的TBM掘进参数预测模型,实现对TBM掘进参数的预测。研究结果表明:选取与总推力和推进速率关联度最密切的刀盘转速、刀盘扭矩和贯入度作为特征参数;构建的CNN BiGRU RF模型预测掘进参数对总推力和推进速率的拟合优度R 2均值分别为0.950和0.966,均方误差MSE平均值分别为0.750和0.782,均方根误差RMSE平均值分别为0.866和0.885,平均绝对误差MAE平均值分别为1.054和1.007,并且回归评价指标MSE、RMSE、MAE相较于CNN BiGRU模型,分别降低2.497、0.966和0.386,R 2提升23.4%,证明CNN BiGRU RF模型的预测准确度和泛化性最高。该研究可为实际工程掘进参数预测提供指导,有助于推动TBM在煤矿的推广,保障TBM的施工进度。 展开更多
关键词 CNN BiGRU RF模型 TBM掘进参数 皮尔逊相关系数法 卷积神经网络 双向门控循环单元神经网络 随机森林 时间序列预测
在线阅读 下载PDF
一种基于GRU的氢燃料重卡汽车工况下锂离子电池温度预测模型 被引量:5
15
作者 闫志远 孙桓五 +1 位作者 刘世闯 赵立禹 《中国电机工程学报》 EI CSCD 北大核心 2024年第6期2330-2339,I0021,共11页
针对目前氢燃料重卡在行驶过程中,动力电池工况复杂、外表面温度变化难以预测、滞后时间长等问题,以氢燃料重卡锂离子动力电池外表面温度为研究对象,提出一种类交叉熵损失函数和自适应矩估计(adaptive moment estimation,Adam)优化的改... 针对目前氢燃料重卡在行驶过程中,动力电池工况复杂、外表面温度变化难以预测、滞后时间长等问题,以氢燃料重卡锂离子动力电池外表面温度为研究对象,提出一种类交叉熵损失函数和自适应矩估计(adaptive moment estimation,Adam)优化的改进型门控循环单元神经网络(gate recurrent unit,GRU),建立锂离子动力电池表面温度预测模型。该模型利用GRU神经网络的特殊门机制和全局处理能力,得到锂离子电池表面温度和电池充放电电流、电压、充放电时间、历史温度、当前温度以及环境温度之间的非线性关系。采用4个精度评价函数对预测模型进行评价:经过5种环境温度下的模拟工况实验,验证该模型的准确性。结果表明,基于GRU的电池温度预测模型的误差相对于反向传播(back propagation,BP)神经网络模型和循环神经网络模型(recurrent neural network,RNN)来说较小,说明GRU的锂离子电池温度预测模型具有更高的精度。该文为磷酸铁锂电池表面温度的精准预测提出了一种新的方法。 展开更多
关键词 氢燃料重卡 锂离子电池 温度预测模型 门控循环单元神经网络 深度学习
在线阅读 下载PDF
基于注意力机制和CNN-GRU模型的脱硫系统pH值预测 被引量:5
16
作者 赵鹏飞 钱玉良 +1 位作者 金鑫 彭道刚 《水电能源科学》 北大核心 2024年第9期199-203,184,共6页
针对火电厂石灰石-石膏烟气湿法脱硫系统中所面临的浆液pH值测量不准确、时间长的问题,提出了一种基于注意力机制和CNN-GRU模型来预测吸收塔内浆液pH值。首先,对火电厂监测系统(SIS)数据库中的数据进行预处理,然后使用相关性分析来确定... 针对火电厂石灰石-石膏烟气湿法脱硫系统中所面临的浆液pH值测量不准确、时间长的问题,提出了一种基于注意力机制和CNN-GRU模型来预测吸收塔内浆液pH值。首先,对火电厂监测系统(SIS)数据库中的数据进行预处理,然后使用相关性分析来确定它们之间的关联性。接下来可使用注意力机制(ATT)来自适应分配与pH值相关联的输入数据的权重,并根据权重大小来区分强弱特征变量,以此来解决预测精度低和不准确的问题。其后利用卷积神经网络(CNN)来二次提取和降维这些特征数据,并对送入门控循环神经单元网络(GRU)中的数据进行优化,可大大加快神经网络训练进程,并且能够更准确地处理复杂的动态脱硫变化。对某电厂2×350 MW机组运行数据进行测试,并通过与其他主流算法对比得出所建pH值预测模型具备更高的精确度和稳定性。最后结合模型预测控制(MPC),验证了该模型的实用性。 展开更多
关键词 注意力机制 卷积神经网络 门控循环单元 浆液PH值 预测模型
在线阅读 下载PDF
异常行为敏感的学生行为时序建模及心理健康预测方法 被引量:2
17
作者 贾熹滨 魏心岚 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期939-947,共9页
为了对学生异常行为的早期感知及校园行为时序建模,提出一种异常行为敏感的学生行为时序建模及心理健康预测(student behavioral temporal modeling sensitive to abnormal behavior for mental health prediction, SBTM-SABMHP)方法,... 为了对学生异常行为的早期感知及校园行为时序建模,提出一种异常行为敏感的学生行为时序建模及心理健康预测(student behavioral temporal modeling sensitive to abnormal behavior for mental health prediction, SBTM-SABMHP)方法,利用移动设备收集的加速器、声音传感器及移动热点(wireless fidelity, WI-FI)等多种行为感知数据,构建异质信息网络,对学生当前行为模式进行建模。同时,为实现对学生历史行为时序数据的建模,建立了基于注意力机制的异常行为敏感的门控模块,有效融合学生长短期行为,并对学生行为时序建模,实现心理健康预测。在公共数据集StudentLife上对所提出的模型进行了对比分析实验。实验结果表明,与多种学生心理健康预测基线方法相比,该方法在4个评价指标上都取得了最佳性能,证明了该模型在学生心理健康预测任务上的有效性。 展开更多
关键词 学生行为建模 异质信息网络 注意力机制 门控机制 教育数据挖掘 心理健康预测
在线阅读 下载PDF
双关系预测与特征融合的实体关系抽取模型 被引量:1
18
作者 沈健 夏鸿斌 刘渊 《智能系统学报》 CSCD 北大核心 2024年第2期462-471,共10页
现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and... 现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and feature fusion,DRPFF),该模型使用预训练的基于Transformer的双向编码表示模型(bidirectional encoder representation from transformers,BERT)对文本进行编码,并设计两阶段的双关系预测结构来减少抽取过程中错误三元组的生成。在阶段间通过门控线性单元(gated linear unit,GLU)和条件层规范化(conditional layer normalization,CLN)组合的结构来更好地融合实体之间的特征。在NYT和WebNLG这2个公开数据集上的试验结果表明,该模型相较于基线方法取得了更好的效果。 展开更多
关键词 实体关系抽取 关系三元组 预训练模型 双关系预测 指针网络 特征融合 门控线性单元 条件层规范化
在线阅读 下载PDF
宁夏测控闸门测流精度试验及流量预测模型
19
作者 侯峥 牛家永 +1 位作者 朱洁 焦炳忠 《科学技术与工程》 北大核心 2024年第31期13553-13561,共9页
测控一体化闸门作为一种新型测控设备,通过测箱内分层布置的超声波探头进行流量计算,但当水流流态紊乱或流态快速转变时,会出现个别探头无法准确获取路径流速,采用流速面积法进行流量计算时会产生较大误差,目前尚缺少一种对测箱内流量... 测控一体化闸门作为一种新型测控设备,通过测箱内分层布置的超声波探头进行流量计算,但当水流流态紊乱或流态快速转变时,会出现个别探头无法准确获取路径流速,采用流速面积法进行流量计算时会产生较大误差,目前尚缺少一种对测箱内流量进行率定的方法。针对宁夏引黄灌区广泛使用的箱涵式测控一体化闸门开展了大量室内测箱过流试验,分析了淹没水深和探头遮挡对测流精度的影响。基于450组过流试验样本数据和反向传播(back propagation,BP)神经网络及其优化算法,建立了可自适应流态变化的测控一体化闸门流量预测模型,并对预测模型的有效性和精确性进行了验证。通过与测箱内层流速计算结果进行对比,探讨了优化神经网络模型在测控一体化闸门流量率定中的应用效果。结果表明:测箱淹没水深不应小于10 cm,为提高设备抗干扰能力,探头层数应至少满足8层要求;相较于其他3种优化算法,经麻雀搜索算法(sparrow search algorithm,SSA)或粒子群算法(particle swarm algorithm,PSO)优化的BP模型具有更高的预测精度和更集中的误差分布;综合分析预测精度、误差分布和运行时间3个方面,对预测精度有较高要求时可选用SSA-BP模型,对运行时间有较高要求可选用PSO-BP模型。该预测方法可为宁夏引黄灌区测控一体化闸门的流速校准和异常点剔除提供参考。 展开更多
关键词 测控一体化闸门 影响因素 BP神经网络模型 优化算法 流量预测
在线阅读 下载PDF
基于强化学习和组合式深度学习模型的超短期光伏功率预测 被引量:59
20
作者 孟安波 许炫淙 +3 位作者 陈嘉铭 王陈恩 周天民 殷豪 《电网技术》 EI CSCD 北大核心 2021年第12期4721-4728,共8页
超短期光伏功率预测对光伏并网系统的安全运行有着重要意义。针对传统单一预测模型在进行光伏功率预测时受到功率随机波动性的影响导致预测精度往往不理想的问题,提出了组合式深度学习预测模型。首先,采用小波包分解对原始光伏功率序列... 超短期光伏功率预测对光伏并网系统的安全运行有着重要意义。针对传统单一预测模型在进行光伏功率预测时受到功率随机波动性的影响导致预测精度往往不理想的问题,提出了组合式深度学习预测模型。首先,采用小波包分解对原始光伏功率序列进行分解,初步降低了原始光伏功率的非稳定性。其次,在此基础上分别采用长短时记忆网络、门控循环单元与循环神经网络3个单一模型对光伏功率进行预测得到3个预测结果并加权组合。最后,利用强化学习的Q学习算法对组合权重进行优化,进而最大化组合模型的预测性能。以某地光伏电站实测数据进行实验,结果表明文中所提出的组合预测模型优于其他预测模型,并验证了所提模型的有效性。 展开更多
关键词 光伏功率预测 长短时记忆网络 门控循环单元 循环神经网络 Q学习算法 组合模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部