期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
All-optical computing based on convolutional neural networks 被引量:10
1
作者 Kun Liao Ye Chen +7 位作者 Zhongcheng Yu Xiaoyong Hu Xingyuan Wang Cuicui Lu Hongtao Lin Qingyang Du Juejun Hu Qihuang Gong 《Opto-Electronic Advances》 SCIE 2021年第11期46-54,共9页
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi... The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing. 展开更多
关键词 convolutional neural networks all-optical computing mathematical operations cascaded silicon waveguides
在线阅读 下载PDF
改进YOLOv8n的林业害虫检测方法
2
作者 陈万志 袁航 《北京林业大学学报》 北大核心 2025年第2期119-131,共13页
【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复... 【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复杂度,提高检测速度;其次,通过构建多尺度自适应特征融合模块DA-C2F提升模型在复杂背景下害虫目标的聚焦能力和识别精度,此外新增的小目标检测头XSH能够进一步提升小目标害虫的检测能力;最后,采用基于最小点距离交并比损失函数MPDIoU作为模型的边界框损失,提升网络收敛速度,进一步增强害虫目标的定位准确率。【结果】改进模型的检测精确率、召回率、平均精度、平均精度均值(mAP50-95)和F_(1)分数分别达到98.6%、95.7%、98.3%、85.6%和0.979,前4者较原模型分别提升了3.9、2.6、2.8、2.5个百分点,F_(1)分数提升了4.4%;检测速度(帧率)达到了95帧/秒,提升了15.9%,优于更轻量级的模型。此外,对比其他检测模型,改进模型对飞蛾类害虫的检测精确率提升了11.2个百分点,并且两种独立飞蛾害虫综合检测的表现也更为优异。【结论】本研究提出的方法对于林业害虫的检测准确度更高,检测速度更快,且对多类别害虫的检测精度更高,改进模型的泛化能力更强。 展开更多
关键词 深度学习 卷积神经网络(CNN) 林业害虫检测 YOLOv8n 多尺度级联注意力特征提取网络 多尺度自适应特征融合 小目标检测头
在线阅读 下载PDF
基于深度卷积判别网络的人脸比对方法
3
作者 谷凤伟 陆军 +1 位作者 刘子玄 蔡成涛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1770-1782,共13页
针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级... 针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级联卷积神经网络得到MTC-FaceNet网络,实现实际场景中的人脸检测提取目标人脸;利用深度卷积神经网络获取高维人脸深度特征,并将FaceNet网络的欧氏距离模块替换为所提出的相似度判别模块SDM,用于高维人脸特征向量比对;最终,利用自制的人脸数据集C-facev1,结合CASIA-WebFace人脸数据集对本文人脸比对算法进行训练,使用人脸数据集LFW和CASIA-FaceV5对训练后的模型进行性能评估。实验结果表明:本文所设计的MTC-FaceNetSDM的人脸比对准确率比MTC-FaceNet整体提高1.48%,对中国人脸比对准确率提高3.80%,可实现多人种的人脸比对,同时该算法具备良好的鲁棒性和泛化能力,达到优良的人脸比对效果,可实际应用于人脸验证系统。 展开更多
关键词 人脸比对 深度卷积判别网络 多任务级联卷积神经网络 相似度判别模块 人脸特征向量
在线阅读 下载PDF
基于级联网络的肝脏肿瘤CT图像分割
4
作者 莫亚霓 陈晓婕 张本鑫 《电视技术》 2024年第1期38-41,共4页
肝脏肿瘤计算机断层扫描(Computed Tomography,CT)图像分割是肝癌诊断与治疗过程的重要环节。近年来,基于U型结构的卷积神经网络在该分割任务取得了巨大的成功,但仍存在一些挑战,如肿瘤边界分割不精确、小肿瘤难以检测等。为提高肝脏肿... 肝脏肿瘤计算机断层扫描(Computed Tomography,CT)图像分割是肝癌诊断与治疗过程的重要环节。近年来,基于U型结构的卷积神经网络在该分割任务取得了巨大的成功,但仍存在一些挑战,如肿瘤边界分割不精确、小肿瘤难以检测等。为提高肝脏肿瘤的分割精度,提出一种级联网络MCPUNet用于肝脏肿瘤分割任务。MCPUNet引入MDB(MDconv Block)和MP(Mixing Pooling)以获取上下文信息,MDB通过混合深度可分离卷积和坐标注意力机制提取图像的多尺度特征,MP用于下采样减少图像尺寸。实验证明,与原始的U-Net模型相比,该模型在肝脏肿瘤分割任务上的交并比(Intersection over Union,IoU)、准确度和召回率指标分别提高3.8%、2.5%和2.0%,为肝癌诊断和治疗提供了可靠依据。 展开更多
关键词 肝脏肿瘤分割 混合深度可分离卷积 级联网络 多尺度 注意力机制
在线阅读 下载PDF
基于改进级联卷积神经网络的交通标志识别 被引量:11
5
作者 王海 王宽 +2 位作者 蔡英凤 刘泽 陈龙 《汽车工程》 EI CSCD 北大核心 2020年第9期1256-1262,1269,共8页
自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改... 自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改进了目标检测任务中的评价指标IoU,引入目标检测任务的直接评价指标GIoU指导定位任务,提高了检测精度。最后,算法在德国交通标志数据集GTSDB下进行了实验验证,以ResNet101为基础特征提取网络,mAP可达98.8%,实验结果表明了所提算法的有效性,具有优越的工程实用价值。 展开更多
关键词 交通标志检测 深度学习 卷积神经网络 级联RCNN
在线阅读 下载PDF
MTCNN的优化及其在道路车辆检测中的应用 被引量:4
6
作者 刘云霄 王敬东 +1 位作者 黄雨秋 赵若辰 《光电子技术》 CAS 北大核心 2019年第3期196-204,224,共10页
采用一种运算速度较快的MTCNN(multi-task cascaded convolutional networks,多任务卷积神经网络)的目标检测方法。针对道路车辆的属性,引入内部级联结构,通过在网络内部添加小型分类器从而更高效处理车辆负样本;引入双流卷积神经网络,... 采用一种运算速度较快的MTCNN(multi-task cascaded convolutional networks,多任务卷积神经网络)的目标检测方法。针对道路车辆的属性,引入内部级联结构,通过在网络内部添加小型分类器从而更高效处理车辆负样本;引入双流卷积神经网络,联合车脸与车身特征进行训练,提升模型在复杂条件下的适用性。在保证实时性的同时,提高了模型在城市道路、雨天、道路拥堵等复杂场景下对于道路车辆的检测精度;并解决MTCNN对于图像中小目标的检测精度不高以及在整段视频中对于车辆的检测与跟踪不稳定问题。 展开更多
关键词 多任务卷积神经网络 车辆检测 深度学习
在线阅读 下载PDF
基于多任务分类的吸烟行为检测 被引量:13
7
作者 程淑红 马晓菲 +1 位作者 张仕军 张丽 《计量学报》 CSCD 北大核心 2020年第5期538-543,共6页
为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴... 为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴趣区域(ROI);在此基础上,采用残差网络对ROI内目标进行检测和状态识别。实验结果表明,该算法可以准确检测到吸烟行为的发生并做出状态判断,准确率可以达到87. 5%。 展开更多
关键词 计量学 吸烟行为检测 多任务分类 卷积神经网络 级联回归 残差网络 感兴趣区域 人脸识别
在线阅读 下载PDF
基于深度学习的司机疲劳驾驶检测方法研究 被引量:19
8
作者 李小平 白超 《铁道学报》 EI CAS CSCD 北大核心 2021年第6期78-87,共10页
针对传统基于机器视觉的司机疲劳检测模型对硬件系统要求较高、检测准确率和效率较低等问题,提出一种基于MTCNN-PFLD-LSTM深度学习模型的疲劳驾驶检测算法。通过多任务卷积神经网络MTCNN进行人脸区域检测;利用PFLD模型检测人脸眼部、嘴... 针对传统基于机器视觉的司机疲劳检测模型对硬件系统要求较高、检测准确率和效率较低等问题,提出一种基于MTCNN-PFLD-LSTM深度学习模型的疲劳驾驶检测算法。通过多任务卷积神经网络MTCNN进行人脸区域检测;利用PFLD模型检测人脸眼部、嘴部和头部的关键点及空间姿态角;计算出基于时间序列的人脸疲劳特征参数矩阵并输入长短期记忆网络LSTM进行疲劳驾驶检测,通过优化设计不同阶段损失函数及其权重,进一步提高检测能力。在未采用GPU加速的情况下,通过YawDD数据集与自采数据集进行试验并与最新的8种方法进行比较,准确率和检测帧率分别达到99.22%和46,准确率比未采用GPU加速试验中性能第2的模型增加了0.26%,检测帧率比未采用GPU加速试验中性能第2的模型增加了1.3倍。试验结果表明,提出的方法可以提高疲劳检测的准确度和效率,并可在移动设备等低算力设备上应用。 展开更多
关键词 多任务卷积神经网络MTCNN 长短期记忆人工神经网络LSTM 深度学习 疲劳驾驶检测
在线阅读 下载PDF
基于级联Faster R-CNN的高铁接触网支撑装置等电位线故障检测 被引量:15
9
作者 李长江 韩志伟 +2 位作者 钟俊平 王立有 刘志刚 《铁道学报》 EI CAS CSCD 北大核心 2019年第6期68-73,共6页
在高速铁路接触网支撑与悬挂装置中,等电位线起到保证定位管与定位器间可靠电连接的作用。当其发生散股故障时,会对定位器支座造成电化学腐烛,甚至导致定位器与支座连接处断裂脱离,影响行车运行安全。针对高速铁路接触网支撑装置等电位... 在高速铁路接触网支撑与悬挂装置中,等电位线起到保证定位管与定位器间可靠电连接的作用。当其发生散股故障时,会对定位器支座造成电化学腐烛,甚至导致定位器与支座连接处断裂脱离,影响行车运行安全。针对高速铁路接触网支撑装置等电位线散股问题,提出一种基于级联Faster R-CNN目标定位的等电位线不良状态检测方法。通过分析接触网4C检测车采集到的接触网支撑及悬挂装置图像,利用第一级Faster R-CNN获得定位器支座部件特征并实现定位;利用第二级Faster R-CNN学习等电位线散股故障特征;通过对比分析等电位线正常及故障占比,实现等电位线正常与故障分类。实验表明,本方法能够较准确地实现等电位线不良状态检测,测试集识别准确率达到94.5%。 展开更多
关键词 等电位线 散股故障 级联Faster R-CNN 深度学习
在线阅读 下载PDF
采用深度学习的快速超分辨率图像重建方法 被引量:10
10
作者 张圣祥 郑力新 +1 位作者 朱建清 潘书万 《华侨大学学报(自然科学版)》 CAS 北大核心 2019年第2期245-250,共6页
为满足实际工业生产需要,提出一种基于深度学习的快速超分辨率图像重建方法.采用一种快速的卷积神经网络结构,使用级联的小卷积核以取得重建速度上的提升,加深卷积网络以取得重建质量上的提升.实验结果表明:在标准的公共数据集上,该算... 为满足实际工业生产需要,提出一种基于深度学习的快速超分辨率图像重建方法.采用一种快速的卷积神经网络结构,使用级联的小卷积核以取得重建速度上的提升,加深卷积网络以取得重建质量上的提升.实验结果表明:在标准的公共数据集上,该算法重建的高分辨率图像在主观视觉感受和客观的图像质量评价(峰值信噪比)上取得较好的效果,且重建时间大大缩短;将算法应用在实际的项目中,能达到阈值分割后准确检测物体的标准,减少企业对高额工业相机的经济开支. 展开更多
关键词 超分辨率图像重建 深度学习 卷积神经网络 级联
在线阅读 下载PDF
基于级联卷积神经网络的图像篡改检测算法 被引量:9
11
作者 毕秀丽 魏杨 +2 位作者 肖斌 李伟生 马建峰 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2987-2994,共8页
基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然... 基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然可以学习更高级的语义信息,但检测定位篡改区域效果并不理想。该文提出一种基于级联卷积神经网络的图像篡改检测算法,在卷积神经网络所展示出来的普遍特性的基础上进一步探究其深层次的特性,利用浅层稀神经元的级联网络结构弥补以往深层多神经元的单一网络结构在图像篡改检测中的缺陷。该文提出的检测算法由级联卷积神经网络和自适应筛选后处理两部分组成,级联卷积神经网络实现分级式的篡改区域定位,自适应筛选后处理对级联卷积神经网络的检测结果进行优化。通过实验对比,该文算法展示了较好的检测效果,且具有较高的鲁棒性。 展开更多
关键词 图像篡改检测 级联卷积神经网络 浅层稀神经元 级联网络结构 自适应筛选后处理
在线阅读 下载PDF
基于改进Faster R-CNN的花色布瑕疵检测算法 被引量:4
12
作者 费利斌 徐洋 +2 位作者 余智祺 孙以泽 季诚昌 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第2期75-80,共6页
针对布匹瑕疵自动化检测,基于传统的机器视觉方法依赖于人工设计特征,对具有复杂背景图案的花色布瑕疵特征提取难度非常大,因此提出一种基于改进Faster R-CNN(faster region with convolutional neural network)的花色布瑕疵检测算法。... 针对布匹瑕疵自动化检测,基于传统的机器视觉方法依赖于人工设计特征,对具有复杂背景图案的花色布瑕疵特征提取难度非常大,因此提出一种基于改进Faster R-CNN(faster region with convolutional neural network)的花色布瑕疵检测算法。在Faster R-CNN的基础上使用Resnet-50作为主干网络,嵌入可变形卷积来提高瑕疵特征的学习能力。通过设计多尺度模型来提高小瑕疵的检测,引入级联网络来提高瑕疵检测精度和定位准确度,构造优化的损失函数来降低样本不平衡影响。通过试验验证了该算法的有效性。结果表明,瑕疵检测效果准确率达94.97%,并能精准定位瑕疵位置,可满足工厂的实际需求。 展开更多
关键词 花色布 瑕疵检测 可变形卷积 多尺度模型 级联网络 融合损失函数
在线阅读 下载PDF
基于级联卷积网络的人脸特征点检测 被引量:4
13
作者 张衡 马明栋 王得玉 《南京邮电大学学报(自然科学版)》 北大核心 2019年第3期104-110,共7页
人脸特征点检测是人脸识别和分析领域的关键步骤,同时也是人脸表情识别、头部姿态估计、人脸身份鉴定等相关技术的基础。由于脸部姿势和表情的不断变化以及遮挡问题的存在,人脸特征点检测依旧是一个具有挑战性的难题。文中提出用由粗到... 人脸特征点检测是人脸识别和分析领域的关键步骤,同时也是人脸表情识别、头部姿态估计、人脸身份鉴定等相关技术的基础。由于脸部姿势和表情的不断变化以及遮挡问题的存在,人脸特征点检测依旧是一个具有挑战性的难题。文中提出用由粗到精的多任务级联神经网络模型来提升人脸检测和特征点定位的精度,使模型具有更好的鲁棒性。整个网络框架采用三阶段级联网络,由粗到精的检测人脸和定位特征点位置。首先采用脸部校正方法预处理人脸图片,主要是校正人脸偏转角度;然后使用两个小型网络来预测人脸框及定位人脸特征点;最后根据网络预测的特征点位置,对局部区域进行裁剪,然后再对局部区域预测单个特征点,使得特征点的定位更加准确。为了更好地评估文中提出的方法,在AFW、AFLW等数据集上做了对照实验,相比较TCNN网络模型,文中方法在AFW中错误率降低了1.19%,在AFLW中错误率降低了0.8%。 展开更多
关键词 级联卷积神经网络 人脸检测 人脸校正 深度学习
在线阅读 下载PDF
面向遥感图像检索的级联池化自注意力研究 被引量:5
14
作者 吴刚 葛芸 +1 位作者 储珺 叶发茂 《光电工程》 CAS CSCD 北大核心 2022年第12期53-65,共13页
高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力... 高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力模块,自注意力在建立语义依赖关系的基础上,可以学习图像关键的显著特征,级联池化是在小区域最大池化的基础上再进行均值池化,将其用于自注意力模块,能够在关注图像显著信息的同时保留图像重要的细节信息,进而增强特征的判别能力。然后,将级联池化自注意力模块嵌入到卷积神经网络中,进行特征的优化和提取。最后,为了进一步提高检索效率,采用监督核哈希对提取的特征进行降维,并将得到的低维哈希码用于遥感图像检索。在UC Merced、AID和NWPU-RESISC45数据集上的实验结果表明,本文方法能够有效提高检索性能。 展开更多
关键词 遥感图像检索 级联池化 自注意力模块 监督核哈希 卷积神经网络
在线阅读 下载PDF
基于JMI-CNN-LSTM耦合模型的梯级水电站间流量动态滞时关系 被引量:5
15
作者 闫孟婷 黄炜斌 +2 位作者 张天遥 马光文 赵丽伟 《水利水电技术(中英文)》 北大核心 2023年第3期154-164,共11页
【目的】梯级水电站间存在的水力联系导致下游电站的运营模式往往受制于上游电站,以往的梯级水电站优化调度中通常选择忽略流量滞时或认为其是常数,少有考虑流量滞时与上游水电站出库流量及区间降雨等因素的动态关系。为提高下游电站预... 【目的】梯级水电站间存在的水力联系导致下游电站的运营模式往往受制于上游电站,以往的梯级水电站优化调度中通常选择忽略流量滞时或认为其是常数,少有考虑流量滞时与上游水电站出库流量及区间降雨等因素的动态关系。为提高下游电站预判流量精确度,将神经网络应用到梯级电站间流量动态滞时研究中。【方法】首先采用联合互信息理论选取下游电站入库流量的主要影响因素作为模型输入因子,其次根据卷积神经网络和长短时记忆神经网络的互补特性,建立上游出库流量与下游入库流量的JMI-CNN-LSTM深度学习网络模型,最后结合实际算例,将所建立模型的拟合结果与随机森林回归模型、固定滞时模型进行对比。【结果】结果显示:本文所建立的模型较相同条件下其他方法各类误差均存在不同程度的减少,其中MAE至少减少了14.6%。【结论】结果表明:相较其他方法,JMI-CNN-LSTM耦合模型预测精度更佳,能够更准确的体现梯级电站间流量滞时的动态关系。 展开更多
关键词 梯级水电站 动态滞时 联合互信息 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于双网络级联卷积神经网络的设计 被引量:7
16
作者 潘兵 曾上游 +2 位作者 杨远飞 周悦 冯燕燕 《电光与控制》 CSCD 北大核心 2019年第2期57-61,共5页
传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特... 传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特征更具有辨别性。双网络级联是采用两条支路进行特征提取,一条支路为传统的CNN,另一条支路为在传统的CNN基础上加上残差操作,在下一次特征图降维前通过级联操作将两条不同的网络支路结合在一起。本网络实验采用101_food和caltech256数据集进行测试,将级联后的网络和两条支路网络进行对比,实验最后表现出较好的结果。 展开更多
关键词 图像识别 卷积神经网络 网络级联 特征图
在线阅读 下载PDF
UU-Net:基于U-Net的U形多路径网络的视网膜血管分割 被引量:4
17
作者 代洋洋 王宽全 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第5期718-723,共6页
为解决视网膜血管形状复杂且图像对比度较小导致血管末梢检测难度大的问题,本文提出一种基于U-Net的U形多路径网络模型(UU-Net)。在U-Net内部,利用残差模块代替普通卷积,避免模型过深导致梯度消失;U-Net作为核心模块,采用U形结构进行堆... 为解决视网膜血管形状复杂且图像对比度较小导致血管末梢检测难度大的问题,本文提出一种基于U-Net的U形多路径网络模型(UU-Net)。在U-Net内部,利用残差模块代替普通卷积,避免模型过深导致梯度消失;U-Net作为核心模块,采用U形结构进行堆叠以获取更多细节信息;U-Net模块之间采用Addition互连,构成多条从输入到输出的路径,每一条路径相当于一个FCN的变体,使得UU-Net模型能够捕获更复杂特征,产生更高的精度。在DRIVE数据集上,UU-Net模型在多项测试指标上取得优异性能,平均准确率为0.9561,受试者接受者工作特性曲线下的面积为0.9851,精准率-召回率曲线下的面积为0.9826。此外,UU-Net模型提供一种基于U-Net改进模型的思路,可作为密集模块或残差模块的基础结构。 展开更多
关键词 图像分割 视网膜血管 U-Net 残差网络 全卷积网络 级联结构
在线阅读 下载PDF
基于级联网络和残差特征的人脸特征点定位 被引量:3
18
作者 许爱东 黄文琦 +3 位作者 明哲 陈伟亮 胡浩基 杨航 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第12期2365-2371,共7页
为进一步提高人脸特征点定位精度,探究当前广泛用于人脸关键点定位的全卷积神经网络(FCN)架构的原理和缺陷,讨论FCN核函数在特征点定位中引入的副作用,即训练和测试时评判准则不一致的问题.理论分析该问题存在的可能性和普遍性,设计实... 为进一步提高人脸特征点定位精度,探究当前广泛用于人脸关键点定位的全卷积神经网络(FCN)架构的原理和缺陷,讨论FCN核函数在特征点定位中引入的副作用,即训练和测试时评判准则不一致的问题.理论分析该问题存在的可能性和普遍性,设计实验验证在实际场景下此问题存在的广泛性.提出结合残差特征的沙漏网络结构并将其应用于人脸特征点检测;提出多级沙漏网络的级联结构,并将其与经典的栈式沙漏网络进行对比分析.实验结果表明:二级级联结构获得了与四级栈式结构相当的特征点定位精度,大幅降低了模型参数量和时间复杂度.所提方法在300-W数据库的困难子集上的平均归一化误差为6.84%,优于已有最好方法. 展开更多
关键词 人脸特征点检测 全卷积神经网络(FCN) 残差特征 级联结构
在线阅读 下载PDF
基于SWA优化级联网络的表情识别方法 被引量:3
19
作者 张翔 史志才 陈良 《电子科技》 2020年第9期16-20,共5页
为了提高表情识别技术的检测精度,文中提出了一种采用随机权重平均SWA优化级联网络的人脸表情识别方法。与单个卷积网络相比,多网络级联能得到更好的检测精度。相对于传统的SGD训练方法,SWA训练方法能增强级联网络中子网络的泛化能力,... 为了提高表情识别技术的检测精度,文中提出了一种采用随机权重平均SWA优化级联网络的人脸表情识别方法。与单个卷积网络相比,多网络级联能得到更好的检测精度。相对于传统的SGD训练方法,SWA训练方法能增强级联网络中子网络的泛化能力,进一步提高模型的整体性能。通过在Fer2013数据集上测试实验发现,基于SWA方法训练采用加权求和法方式级联的网络模型识别准确率达到74.478%,相对于传统SGD方法训练的单网络模型提高了1.4%以上。另外,与其他典型方法相比,所提改进模型的识别准确率更高。 展开更多
关键词 表情识别 卷积神经网络 随机权重平均 随机梯度下降法 Fer2013数据集 网络级联
在线阅读 下载PDF
基于多级联递进卷积结构的图像去雨算法 被引量:1
20
作者 张勇 郭杰龙 +3 位作者 汪帆 兰海 俞辉 魏宪 《液晶与显示》 CAS CSCD 北大核心 2023年第10期1409-1422,共14页
雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺... 雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺陷,无法恢复出足够清晰的视觉任务图像。受益于卷积神经网络架构的强大特征提取能力,本文提出了一种端到端的多级联递进卷积结构算子,该算子包含4层卷积层,通过阶梯化连接构成一个整体模块,该模块可以针对多尺度场景下的雨天进行特征提取并整合。将该算子模块嵌入到渐进循环网络结构中,利用循环结构多次去除雨纹,最终有效还原出接近真实图像的无雨图像。该方法在现有的人工合成雨图数据集Rain100H、Rain100L、Rain800与自动驾驶领域合成雨图数据集BDD1000上进行了对比实验。实验结果表明,该算法在4个数据集上的PSNR值达到了30.70,37.91,27.63,35.74 dB,SSIM值达到了0.914,0.980,0.894,0.977。通过真实雨图数据集去雨结果的可视化展示,充分验证了本文方法在去雨任务上的有效性。 展开更多
关键词 图像去雨 多级联递进卷积结构 卷积神经网络 深度学习 多尺度特征 残差结构
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部