期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
Sub-6GHz Assisted mmWave Hybrid Beamforming with Self-Supervised Learning
1
作者 Li Hongyao Gao Feifei +3 位作者 Lin Bo Wu Huihui Gu Yuantao Xi Jianxiang 《China Communications》 2025年第1期158-170,共13页
In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to ... In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet. 展开更多
关键词 hybrid beamforming mmWave selfsupervised learning sub-6GHz assisted mmWave transmission sub-6GHz channel
在线阅读 下载PDF
Multi-task learning for seismic elastic parameter inversion with the lateral constraint of angle-gather difference
2
作者 Pu Wang Yi-An Cui +4 位作者 Lin Zhou Jing-Ye Li Xin-Peng Pan Ya Sun Jian-Xin Liu 《Petroleum Science》 CSCD 2024年第6期4001-4009,共9页
Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inv... Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters. 展开更多
关键词 Seismic inversion multi-task learning network Angle gathers Lateral accuracy Elastic parameter
在线阅读 下载PDF
Peer-assisted learning to train high-school students to perform basic life-support 被引量:6
3
作者 Hyung Soo Choi Dong Hoon Lee +2 位作者 Chan Woong Kim Sung Eun Kim Je Hyeok Oh 《World Journal of Emergency Medicine》 CAS 2015年第3期186-190,共5页
BACKGROUND: The inclusion of cardiopulmonary resuscitation(CPR) in formal education has been a useful approach to providing basic life support(BLS) services. However, because not all students have been able to learn d... BACKGROUND: The inclusion of cardiopulmonary resuscitation(CPR) in formal education has been a useful approach to providing basic life support(BLS) services. However, because not all students have been able to learn directly from certified instructors, we studied the educational efficacy of the use of peer-assisted learning(PAL) to train high-school students to perform BLS services.METHODS: This study consisted of 187 high-school students: 68 participants served as a control group and received a 1-hour BLS training from a school nurse, and 119 were included in a PAL group and received a 1-hour CPR training from a PAL leader. Participants' BLS training was preceded by the completion of questionnaires regarding their background. Three months after the training, the participants were asked to respond to questionnaires about their willingness to perform CPR on bystander CPR and their retention of knowledge of BLS.RESULTS: We found no statistically significant difference between the control and PAL groups in their willingness to perform CPR on bystanders(control: 55.2%, PAL: 64.7%, P=0.202). The PAL group was not significantly different from the control group(control: 60.78±39.77, PAL: 61.76±17.80, P=0.848) in retention of knowledge about BLS services.CONCLUSION: In educating high school students about BLS, there was no significant difference between PAL and traditional education in increasing the willingness to provide CPR to bystanders or the ability to retain knowledge about BLS. 展开更多
关键词 Peer-assisted learning Basic life support EDUCATION
在线阅读 下载PDF
Multi-tasking to Address Diversity in Language Learning
4
作者 雷琨 《海外英语》 2014年第21期98-99,103,共3页
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately... With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines. 展开更多
关键词 multi-tasking DIVERSITY learning STYLE the fishbow
在线阅读 下载PDF
Nuclear mass based on the multi-task learning neural network method 被引量:10
5
作者 Xing-Chen Ming Hong-Fei Zhang +3 位作者 Rui-Rui Xu Xiao-Dong Sun Yuan Tian Zhi-Gang Ge 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期96-103,共8页
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ... The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL. 展开更多
关键词 Macroscopic–microscopic model Binding energy Neural network multi-task learning
在线阅读 下载PDF
How a Computer Assists English Teaching and Learning among Vocational Colleges
6
作者 胡晓婕 《海外英语》 2016年第23期20-22,共3页
"College English Curriculum Requirements", edited by Department of Higher Education(2007), put forward clearly one of the key points of the national College English teaching reform was to strengthen the appl... "College English Curriculum Requirements", edited by Department of Higher Education(2007), put forward clearly one of the key points of the national College English teaching reform was to strengthen the application of computer to college English teaching and apply computer-and-classroom-based English teaching mode, improving the previous mode dominated by a single teacher. Most colleges and universities in China have basically achieved the popularity of computer multimedia classrooms and campus networks. However, according to researches(Xia, 2002), most teachers still hold the main role of them in classes as"language interpreter"and"language instructor". Although advanced computer technology has been provided, most teachers feel confused or difficult in using it to assist their English teaching efficiently. As a consequence, computer technology fail to play its role in English classes. Driven by the great development of science and technology, computer has brought about incredible changes in every aspect of social life since 1980 s. In current times, almost every aspect of college students' life has been closely associated with computer. However, in most situations, computer is not taken as a typical language learning tool in their daily life. It is known that most students' English basis is relatively weak in vocational colleges; meanwhile, the way in which they learned English during the middle school period was basically translation- based teaching. Thus they have little or even no interest in English learning at all. In this way, discovering a new and interesting way with the aid of computer to learn English is of essential importance. Based on this, the paper discusses five major aspects under the circumstance of computer-assisted English learning. It is hoped that vocational college English teaching and learning can become more efficient by means of computer technology, finally students' English learning motivation and English competence can be enhanced to a great extent. 展开更多
关键词 College English Curriculum Requirements computer-and-classroom-based English teaching mode computer-assisted English learning
在线阅读 下载PDF
Spatio-Temporal Cellular Network Traffic Prediction Using Multi-Task Deep Learning for AI-Enabled 6G 被引量:1
7
作者 Xiaochuan Sun Biao Wei +3 位作者 Jiahui Gao Difei Cao Zhigang Li Yingqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期441-453,共13页
Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence ... Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification. 展开更多
关键词 the sixth generation of mobile communications technology(6G) cellular network traffic multi-task deep learning spatio-temporality
在线阅读 下载PDF
Focus on the Language Learner and Multimedia Assisted Language Teaching
8
作者 刘恒 《北京农学院学报》 2007年第S1期222-224,共3页
当外语教师在试图寻找一种合适的外语教学方法的时候,他们会经常失望的发现现存的教学方法没有一种单独使用效果好并且能够满足所有学习者的要求,放之天下而皆准。因此,第二语言教学将目光从研究教学法中转移到研究学习者的身上来,关注... 当外语教师在试图寻找一种合适的外语教学方法的时候,他们会经常失望的发现现存的教学方法没有一种单独使用效果好并且能够满足所有学习者的要求,放之天下而皆准。因此,第二语言教学将目光从研究教学法中转移到研究学习者的身上来,关注学生的智力、学能、认知风格、学习策略等方面,以便最大限度地帮助学生。笔者从语言学、心理学、二语习得理论及人本主义教学理论等方面探讨了以学习者为中心这一教学原则的理论基础及其集中体现了这一教学思想的多媒体辅助教学。 展开更多
关键词 多媒体辅助教学 学习理论 语言教学与习得
在线阅读 下载PDF
基于CT影像搏动性耳鸣识别及高致病区域
9
作者 田山 王治文 +2 位作者 曹学鹏 苏磊 刘兆会 《北京航空航天大学学报》 北大核心 2025年第2期625-632,共8页
搏动性耳鸣(PT)的病因诊断依赖于影像学检测,但病因众多,缺乏普适性强、机制明确的诊断标准。基于搏动性耳鸣患者和无耳鸣人群的计算机断层扫描(CT)影像横截面图,提出一种高精度的耳鸣识别神经网络模型,并自动标示高致病区域,辅助临床... 搏动性耳鸣(PT)的病因诊断依赖于影像学检测,但病因众多,缺乏普适性强、机制明确的诊断标准。基于搏动性耳鸣患者和无耳鸣人群的计算机断层扫描(CT)影像横截面图,提出一种高精度的耳鸣识别神经网络模型,并自动标示高致病区域,辅助临床诊断。使用迁移学习Resnet-v1-50模型,取骨窗颞骨中部水平截面样本进行分类学习,并以梯度加权类激活映射(gradCAM)方法对分类高权重区域自动标注;统计CT截面大图(全颅)、中图(双侧颞骨)、小图(右侧颞骨)3种数据集的耳鸣分类高权重区域涉及的解剖结构,逐步细化感兴趣区域,提高分类高权重区域标注分辨率。实验结果显示:包含双侧颞骨的中图数据集分类精度最好,测试集精度达到100%。搏动性耳鸣分类高权重区域集中于双侧或单侧颞骨部位,主要包括颞骨蜂房、鼓窦、乙状窦骨板、上鼓室等部位。搏动性耳鸣与颞骨及附近骨质结构有密切关系;搏动性耳鸣患者在双侧颞骨或耳鸣对侧颞骨均有较大概率存在区别于无耳鸣人群的结构异常;颞骨蜂房、鼓窦、乙状窦骨板、鼓室等结构均有较高概率包含搏动性耳鸣的高致病区域。以上影像分析结论与搏动性耳鸣生物力学研究结论实现了相互佐证。 展开更多
关键词 搏动性耳鸣 机器学习 可视化策略 CT影像 神经网络模型 辅助诊断
在线阅读 下载PDF
辅助生殖技术中妊娠结局预测模型的研究进展
10
作者 王聪 宫政 +3 位作者 马赛花 胡凯元 郎梦然 夏天(审校) 《国际生殖健康/计划生育杂志》 2025年第1期30-35,共6页
辅助生殖技术(assisted reproductive technology,ART)妊娠结局受多种因素影响,而传统基于临床经验的评估方式存在主观性和不准确性,临床预测模型(clinical prediction model,CPM)通过综合分析多模态变量因子可提高评估的准确性和治疗... 辅助生殖技术(assisted reproductive technology,ART)妊娠结局受多种因素影响,而传统基于临床经验的评估方式存在主观性和不准确性,临床预测模型(clinical prediction model,CPM)通过综合分析多模态变量因子可提高评估的准确性和治疗安全性,有助于实现精准医疗。目前,基于多样化算法构建了多种预测妊娠结局的CPM,不仅包括传统的逻辑回归算法,还扩展到新型的非线性机器学习算法,如随机森林、神经网络和深度学习算法。最新临床研究进展表明,基于多样化算法构建的CPM在ART领域预测妊娠结局方面展现出较高的准确性和实际应用潜力。进一步研究可以通过收集更多样化和具有代表性的临床数据、优化模型算法、开展多中心合作、提升CPM的泛化能力,构建更准确可靠的CPM。 展开更多
关键词 生殖技术 辅助 妊娠结局 逻辑回归 机器学习 临床预测模型
在线阅读 下载PDF
ASSISTments平台:一款优秀的智能导学系统 被引量:9
11
作者 张钰 李佳静 +1 位作者 朱向阳 王珺 《现代教育技术》 CSSCI 北大核心 2018年第5期102-108,共7页
ASSISTments平台是一款优秀的基于计算机环境的智能导学系统,它以开放性的应用环境、适应性的学习支架、多样化的诊断报告和自动化的再评补救等特征,为智能导学系统的研究和开发提供了良好的范式。基于此,文章首先介绍了ASSISTments平台... ASSISTments平台是一款优秀的基于计算机环境的智能导学系统,它以开放性的应用环境、适应性的学习支架、多样化的诊断报告和自动化的再评补救等特征,为智能导学系统的研究和开发提供了良好的范式。基于此,文章首先介绍了ASSISTments平台,随后详细分析了该平台的特征,最后从研发系统、应用环境、运行机制、诊断功能等方面,探讨了该平台对中国智能导学系统建设带来的启示。文章对ASSISTments平台的介绍和分析,有利于推动智能导学系统的建设及其研究的进一步深入。 展开更多
关键词 assistments平台 智能导学系统 学习支架 诊断报告
在线阅读 下载PDF
国外大学生学习方式调查问卷的比较研究——以ASSIST与R-SPQ-2F为例 被引量:3
12
作者 矫怡程 汪雅霜 《高等教育研究学报》 2012年第4期55-58,共4页
ASSIST和R-SPQ-2F是国外两个比较成熟的学习方式调查问卷。通过比较发现两者理论基础不同,ASSIST问卷以现象图析学为方法论,而R-SPQ-2F的理论基础是认知心理学;两者的结构不同,ASSIST的三个子量表之间相互印证,而R-SPQ-2F更多的强调互... ASSIST和R-SPQ-2F是国外两个比较成熟的学习方式调查问卷。通过比较发现两者理论基础不同,ASSIST问卷以现象图析学为方法论,而R-SPQ-2F的理论基础是认知心理学;两者的结构不同,ASSIST的三个子量表之间相互印证,而R-SPQ-2F更多的强调互动机制与结果;两者的应用层面不同,ASSIST主要在宏观层面,而R-SPQ-2F更强调微观层面。尽管如此,两者最终都走向了"学习方式并非个体特征,而受个人经验与教学、评价方式和学习环境的共同作用,具有情境性"的结论。 展开更多
关键词 assist R-SPQ-2F 学习方式 调查问卷
在线阅读 下载PDF
数据驱动的智能计算及其应用研究综述
13
作者 戴瑞 介婧 +2 位作者 王万良 叶倩琳 吴菲 《浙江大学学报(工学版)》 北大核心 2025年第2期227-248,共22页
为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和... 为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法.从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和自适应DDICs中的不同技术点,剖析了DDICs在解决EOPs时所面临的挑战与机遇.提出未来研究的潜在发展趋势,如进行更深层次的理论分析、探索新颖的学习范式及其在更多不同实际领域中的应用等,旨在为研究者提供有针对性的参考与方向,激发创新思路,从而更有效地应对实际应用中的各种复杂EOPs. 展开更多
关键词 数据驱动优化 代理辅助优化 智能计算 自适应学习 昂贵优化问题
在线阅读 下载PDF
基于能量感知的智能反射面辅助无人机时效数据收集策略
14
作者 张涛 张迁 +1 位作者 朱颖雯 代陈 《电子与信息学报》 北大核心 2025年第2期427-438,共12页
为了应对智能反射面(RIS)辅助的无人机(UAV)在物联网数据收集过程中能量高效利用与信息收集时效性之间的均衡问题,该文提出一种基于深度强化学习的数据收集优化策略。针对无人机在数据采集过程中的飞行能耗、通信复杂性及采集信息时效性... 为了应对智能反射面(RIS)辅助的无人机(UAV)在物联网数据收集过程中能量高效利用与信息收集时效性之间的均衡问题,该文提出一种基于深度强化学习的数据收集优化策略。针对无人机在数据采集过程中的飞行能耗、通信复杂性及采集信息时效性(AoI)约束,设计了一种基于双深度Q网络(DDQN)的联合优化方案,涵盖无人机轨迹规划、物联网设备调度以及智能反射面相位调整。该方案有效缓解了传统Q学习方法中Q值过估计的问题,使无人机能够根据实时环境动态调整飞行轨迹和通信策略,从而在提升数据传输效率的同时降低能量消耗。仿真结果表明,与传统方法相比,所提方案能够显著提高数据收集效率。此外,通过合理分配能量与通信资源,所提方案能够动态适应不同通信环境参数变化,确保系统在能耗与AoI之间达到最佳均衡。 展开更多
关键词 无人机辅助通信 时效性 深度强化学习 智能反射面
在线阅读 下载PDF
老年学习平台中虚拟现实资源的智能运用
15
作者 方程 《数字通信世界》 2025年第1期142-144,共3页
在数字化时代,人工智能(AI)与虚拟现实(V R)技术的融合,为老年学习平台注入新活力。本文通过探索V R资源在老年教育中的智能应用,以优化学习体验,提高学习效率,助力老人跨越数字障碍,为老年教育的创新发展提供理论和实践支撑。
关键词 AI辅助 老年学习平台 虚拟现实 智能运用
在线阅读 下载PDF
基于深度学习的广播电视录音技术与声音转换算法研究
16
作者 白泉 《电声技术》 2025年第1期100-102,共3页
深入研究深度学习辅助的音频增强、噪声去除、语音识别等技术,并建立基于卷积神经网络、循环神经网络以及生成对抗网络的声音转换模型。通过大量音频数据的训练和迁移检验,给出模型在梅尔倒谱失真、主观语音质量评估及平均意见得分等评... 深入研究深度学习辅助的音频增强、噪声去除、语音识别等技术,并建立基于卷积神经网络、循环神经网络以及生成对抗网络的声音转换模型。通过大量音频数据的训练和迁移检验,给出模型在梅尔倒谱失真、主观语音质量评估及平均意见得分等评估指标上的表现。研究表明,深度学习辅助可进一步提升录音技术的性能,为广播电视节目制作提供技术支持。 展开更多
关键词 深度学习辅助 广播电视录音 声音转换算法
在线阅读 下载PDF
基于大语言模型的智能学习助手设计与实现
17
作者 查英华 郭朝霞 鞠慧光 《现代信息科技》 2025年第3期50-55,共6页
人工智能技术的迅猛发展,尤其是大语言模型(LLM)在自然语言处理领域的突破性进展,为教育数字化转型带来了新机遇。聚焦计算机类专业的数据结构课程的学习难题,利用开源LLM开发平台Dify,整合知识点文本表征、检索增强和文本生成等核心技... 人工智能技术的迅猛发展,尤其是大语言模型(LLM)在自然语言处理领域的突破性进展,为教育数字化转型带来了新机遇。聚焦计算机类专业的数据结构课程的学习难题,利用开源LLM开发平台Dify,整合知识点文本表征、检索增强和文本生成等核心技术,设计并实现了一款智能学习助手。通过整合多源知识库,助手能精确匹配学生的个性化问题,并生成于学生问题意图一致的答案。实验结果表明,学习助手在辅助学生学习、提升学习效率以及减轻教师教学负担方面效果显著。 展开更多
关键词 大语言模型 检索增强生成 智能学习助手
在线阅读 下载PDF
Pedestrian Attributes Recognition in Surveillance Scenarios with Hierarchical Multi-Task CNN Models 被引量:2
18
作者 Wenhua Fang Jun Chen Ruimin Hu 《China Communications》 SCIE CSCD 2018年第12期208-219,共12页
Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one.... Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively. 展开更多
关键词 attributes RECOGNITION CNN multi-task learning
在线阅读 下载PDF
Intelligent Energy-Efficient Resource Allocation for Multi-UAV-Assisted Mobile Edge Computing Networks
19
作者 Hu Han Shen Le +2 位作者 Zhou Fuhui Wang Qun Zhu Hongbo 《China Communications》 2025年第4期339-355,共17页
The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require... The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency. 展开更多
关键词 dynamic trajectory optimization intelligent resource allocation unmanned aerial vehicle uav assisted uav assisted mec energy efficiency smart applications mobile edge computing mec deep reinforcement learning
在线阅读 下载PDF
华为云ModelArts平台驱动的AI辅助诊断系统在宫颈液基细胞学非典型病变检出中的应用研究 被引量:1
20
作者 温永琴 张若愚 +2 位作者 李先蕾 许华 徐咏强 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2024年第5期851-858,共8页
目的探索并验证基于华为云ModelArts平台构建的深度学习模型在宫颈液基细胞学(liquid-based cytology,LBC)非典型细胞诊断中的应用价值,并评估其对不同诊断经验医师的辅助效果。方法回顾性分析2020年东莞市人民医院1044例宫颈脱落细胞... 目的探索并验证基于华为云ModelArts平台构建的深度学习模型在宫颈液基细胞学(liquid-based cytology,LBC)非典型细胞诊断中的应用价值,并评估其对不同诊断经验医师的辅助效果。方法回顾性分析2020年东莞市人民医院1044例宫颈脱落细胞学标本,采用华为云ModelArts平台开发的人工智能(artifical intelligence,AI)辅助诊断系统与初级、中级、高级医师进行诊断比对,计算灵敏度、特异度、精确率、符合率、曲线下面积(area under the curve,AUC)等指标,评估AI系统的诊断效能及其对不同年资医师的辅助诊断效果。采用McNemar检验比较AI系统与人工诊断的差异。结果在1044例宫颈脱落细胞学标本中,AI系统在非典型细胞检出的灵敏度和特异度分别为98.96%和89.15%,均高于初级医师(81.95%和91.81%)。AI系统的总体诊断精确率为93.68%,显著高于初级医师(87.26%,P<0.001)。AI辅助可显著提高初级医师的诊断性能,灵敏度从80.1%提升至96.5%,特异度从85.6%提升至92.3%。结论本研究构建的AI辅助宫颈细胞学诊断系统性能优越,尤其能显著提高初级医师的诊断水平,具有良好的临床应用前景。 展开更多
关键词 宫颈癌 液基细胞学(LBC) 非典型鳞状细胞 深度学习 华为云ModelArts 创新应用 辅助诊断
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部