Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning...For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which...Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
基金supported by the National Natural Science Foundation of China(5110917951179156+2 种基金5137917661473233)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ8330)
文摘For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金Project(NS2013091)supported by the Basis Research Fund of Nanjing University of Aeronautics and Astronautics,China
文摘Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.