This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
The problem of distributed coordinated tracking control for networked Euler-Lagrange systems without velocity measurements is investigated. Under the condition that only a portion of the followers have access to the l...The problem of distributed coordinated tracking control for networked Euler-Lagrange systems without velocity measurements is investigated. Under the condition that only a portion of the followers have access to the leader, sliding mode estimators are developed to estimate the states of the dynamic leader in finite time. To cope with the absence of velocity measurements, the distributed observers which only use position information are designed. Based on the outputs of the estimators and observers, distributed tracking control laws are proposed such that all the fol- lowers with parameter uncertainties can track the dynamic leader under a directed graph containing a spanning tree. It is shown that the distributed observer-controller guarantees asymptotical stability of the closed-loop system. Numerical simulations are worked out to illustrate the effectiveness of the control laws.展开更多
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys...Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.展开更多
A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of...A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.展开更多
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new...Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.展开更多
In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed...In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed interconnection links.In terms of the special distributed architectures,the adaptation laws are proposed to update controller parameters on-line when all interconnected fault factors,the upper bounds of perturbations in interconnection links,and external disturbances on subsystems axe unknown.Then,a class of distributed state feedback controllers is constructed to automatically compensate the fault and perturbation effects,and reject the disturbances simultaneously based on the information from adaptive schemes.The proposed adaptive robust tracking controllers can guarantee that the resulting adaptive closed-loop distributed system is stable and each subsystem can asymptotic-output track the corresponding reference signal in the presence of faults and perturbations in interconnection links,and external disturbances.The proposed design technique is finally evaluated in the light of a simulation example.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61321002)the Projects of Major International(Regional)Joint Research Program(61120106010)+5 种基金the National Natural Science Foundation of China(61175112)the Beijing Education Committee Cooperation Building Foundation Projectthe Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)the Changjiang Scholars Programthe Science and Technology Project of Education Department of Fujian Province(JA12370)the Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)
文摘The problem of distributed coordinated tracking control for networked Euler-Lagrange systems without velocity measurements is investigated. Under the condition that only a portion of the followers have access to the leader, sliding mode estimators are developed to estimate the states of the dynamic leader in finite time. To cope with the absence of velocity measurements, the distributed observers which only use position information are designed. Based on the outputs of the estimators and observers, distributed tracking control laws are proposed such that all the fol- lowers with parameter uncertainties can track the dynamic leader under a directed graph containing a spanning tree. It is shown that the distributed observer-controller guarantees asymptotical stability of the closed-loop system. Numerical simulations are worked out to illustrate the effectiveness of the control laws.
基金supported by the National Natural Science Foundation of China(61601504)。
文摘Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.
基金supported by the National Natural Science Foundation of China(615015136140146941301481)
文摘A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
文摘Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.
基金Supported by National Basic Research Program of China(973 Program)(2009CB320604)the Key Program of National Natural Science Foundation of China(60534010)+4 种基金National Natural Science Foundation of China(60674021),Program for New Century Excellent Talents in Universities(NCET-04-0283)the Funds for Cre-ative Research Groups of China(60821063)Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the Funds of Doctoral Program of Ministry of Education,China(20060145019)the 111 Project(B08015)
文摘In this paper,direct adaptive-state feedback control schemes are developed to solve the problem of asymptotic tracking and disturbance rejection for a class of distributed large-scale systems with faulty and perturbed interconnection links.In terms of the special distributed architectures,the adaptation laws are proposed to update controller parameters on-line when all interconnected fault factors,the upper bounds of perturbations in interconnection links,and external disturbances on subsystems axe unknown.Then,a class of distributed state feedback controllers is constructed to automatically compensate the fault and perturbation effects,and reject the disturbances simultaneously based on the information from adaptive schemes.The proposed adaptive robust tracking controllers can guarantee that the resulting adaptive closed-loop distributed system is stable and each subsystem can asymptotic-output track the corresponding reference signal in the presence of faults and perturbations in interconnection links,and external disturbances.The proposed design technique is finally evaluated in the light of a simulation example.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
基金Supported by National Natural Science Foundation of China (61164013, U1334211, 51174091), the Key Program of China Ministry of Railway (2011Z002-D), and Natural Science Foundation of Jiangxi Province (20122BAB201021)
基金Supported by National Natural Science Foundation of China (61273108), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (106112013CD- JZR175501)