Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective ...Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently...A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.展开更多
In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy...In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.展开更多
Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend P...Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.展开更多
基金National Natural Science Foundation of China(62272147,12471492,62072161,12401687)Shandong Provincial Natural Science Foundation(ZR2024QA205)+1 种基金Science and Technology on Communication Security Laboratory Foundation(6142103012207)Innovation Group Project of the Natural Science Foundation of Hubei Province of China(2023AFA021)。
文摘Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金National Natural Science Foundation of China(62372464)。
文摘A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.
文摘In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.
基金National Natural Science Foundation of China(62472397)Innovation Program for Quantum Science and Technology(2021ZD0302902)。
文摘Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.