灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不...灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.展开更多
提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠...提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。展开更多
为了提高求解多目标优化问题的Pareto解集的效率,建立了适用于多维、多目标优化问题的多目标蚁群算法(Multi-objective Ant Colony Algorithm,简称MACA)。该算法首先修正了蚁群算法的信息素更新机制和转移概率,然后改进了蚂蚁的行进策略...为了提高求解多目标优化问题的Pareto解集的效率,建立了适用于多维、多目标优化问题的多目标蚁群算法(Multi-objective Ant Colony Algorithm,简称MACA)。该算法首先修正了蚁群算法的信息素更新机制和转移概率,然后改进了蚂蚁的行进策略,即提出了依概率选择搜索策略。最后,应用该算法对某型号固液混合火箭发动机系统进行了优化设计。计算结果表明,多目标蚁群算法获得的Pareto解集分布均匀、散布范围广,可以有效解决多目标优化问题,能为决策者进行目标权衡提供充分依据。展开更多
文摘灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.
文摘提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。
文摘为了提高求解多目标优化问题的Pareto解集的效率,建立了适用于多维、多目标优化问题的多目标蚁群算法(Multi-objective Ant Colony Algorithm,简称MACA)。该算法首先修正了蚁群算法的信息素更新机制和转移概率,然后改进了蚂蚁的行进策略,即提出了依概率选择搜索策略。最后,应用该算法对某型号固液混合火箭发动机系统进行了优化设计。计算结果表明,多目标蚁群算法获得的Pareto解集分布均匀、散布范围广,可以有效解决多目标优化问题,能为决策者进行目标权衡提供充分依据。