Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with the...Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.展开更多
Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of v...Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.展开更多
Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xantha...Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also ...Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also stu-(died.)The results show that in the presence of 2×10-4 mol·L-1CTAB, the surface charges of pyrophyllite, kaolinite and illite become more positive, and the contact angles of these three silicates also increase evidently in the pH range of 2-8, but the Zeta potentials and contact angles of diaspore change little. So, the floatability of the four minerals is in the following order: pyrophyllite>kaolinite≈illite>diaspore. The open-circuit flotation results also show that a bauxite concentrate with m(Al2O3)/m(SiO2) over 9.3 and Al2O3 recovery over 76% can be obtained from diasporic-bauxite ore. The result of XRD of the bauxite concentrate shows that pyrophyllite is easier to be removed from diasporic-bauxite than illite and kaolinite due to its better floatability.展开更多
In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of...In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of butyl dixanthogen on the surface of stibnite and arsenopyrite. In this paper, their reducing kinetic difference of electrochemistry was confirmed by pure mineral flotation under controlled potential, the artificial SbAs bulk concentrate flotation separation and UVspectrophotometic analysis. The electrochemical separation of SbAs bulk concentrate has been carried out. qualified concentrate has been obtained. Sbconcentrate contains Sb 4944 %, As 044 %, Sbrecovery is 8783 % and Asconcentrate contains As 1096 %, Asrecovery is 9466 %.展开更多
The effects of Mn2+ on the flotation behaviour of fine refractory antimony oxide and its flotationseparation from silicified limestone were studied. The principal gangue mineral, under the condition of PH7. 5 and in t...The effects of Mn2+ on the flotation behaviour of fine refractory antimony oxide and its flotationseparation from silicified limestone were studied. The principal gangue mineral, under the condition of PH7. 5 and in the presence of modified water glass through flotability test, measurements of inter facial potentialand adsorption, and X-ray diffraction technique were describled. The activation mechanism of Mn2+ in antimony oxide flotation is fully discussed via modern molecular orbit theory.展开更多
The flotation behavior of quartz using N-(2-aminoethyl)-octadecanamide (AEOA ) as a collector was investigated.Zeta potential and infrared spectra were conducted to investigate the mechanism of the interaction of the ...The flotation behavior of quartz using N-(2-aminoethyl)-octadecanamide (AEOA ) as a collector was investigated.Zeta potential and infrared spectra were conducted to investigate the mechanism of the interaction of the quartz surface with the collector molecules. The results show that electrostatic force and hydrogen bond play an important role in governing the mechanism of flotation in acidic and alkaline media. The recoveries of quartz are (99.0%)-99.8% in the pH range of 3-11. The recovery of quartz is less dependent on AEOA concentration, mainly due to the formation of micellae in aqueous solution,and the adsorption density of AEOA on the quartz surface nearly remains constant.展开更多
Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution ch...Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution chemistry calculations.Results of flotation and adsorption experiments show that the maximum values of flotation recovery and adsorption capacity occur around p H 9.In term of the solution chemistry calculations,the concentration of metal hydroxamate is greater than that of metal tungstate and metal hydroxyl,and metal hydroxamate compounds are identified to be the main species on wolframite surface at p H region of 8-10,contributing to the increase of OHA adsorption and flotation performance.Results of zeta-potential and IR spectra demonstrate that OHA adsorbs onto wolframite surface by chemisorptions.Hydroxamate ions can bond with Mn_2+/Fe_2+cations of wolframite surface,forming metal hydroxamate compounds,which is a key factor in inducing the hydrophobicity of wolframite under the conditions of maximum flotation.展开更多
In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolf...In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolframite and cassiterite.The flotation performance and adsorption mechanism were investigated by micro/batch flotation,zeta potential measurements and density functional theory(DFT).The micro flotation results showed that the recoveries of scheelite,wolframite and cassiterite using PMOB as collector are 97.45%,95.77% and 90.08%,respectively,and the corresponding recoveries are 91.00%,84.30% and 84.67% for benzohydroxamic acid(BHA).The batch flotation results revealed that the collector dosage could be reduced by about 45% for PMOB compared with BHA,in the case of similar flotation indicators.Zeta potential measurements indicated that PMOB could be adsorbed on the mineral surfaces by chemisorption.Moreover,density functional theory(DFT)calculation results showed that the substituent group—OCH_(3)endues PMOB stronger electron donation ability and hydrophobicity compared with benzohydroxamic acid(BHA),pmethyl benzohydroxamic acid(PMB)and p-hydroxyl benzohydroxamic acid(PHB).展开更多
The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation reco...The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation recovery of monoclinic pyrrhotite is larger than that of hexagonal pyrrhotite using different collectors.When butyl dithiophosphate is used as the collector,the recovery is larger than that by sodium butyl xanthate and sodium diethyl dithiocarbamate.At the pH values ranging from 6 to 9,monoclinic pyrrhotite can be floated well,and the flotation recovery is higher than 90%.Monoclinic and hexagonal pyrrhotites are more easily activated by Cu2+ in acidic conditions than in alkaline conditions.But Cu2+ cannot activate hexagonal pyrrhotite using sodium diethyldithiocarbamate as the collector.By the measurement of contact angle,it is indicated that monoclinic and hexagonal pyrrhotites float well and are easily activated by Cu2+ when dithiophosphate is used as the collector.Using sodium diethyl dithiocarbamate as a collector,the relationship between potential and pH range for pyrrhotite flotation is established.At pH 5,the optimal potential range for flotation of monoclinic pyrrhotite is about 125-580 mV(vs SHE),with the maximum flotation occurring at about 350 mV(vs SHE);the optimal potential range for flotation of hexagonal pyrrhotite is 200?580 mV(vs SHE),with the maximum flotation occurring at about 300 mV(vs SHE).展开更多
The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Ba...The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Based on the results of single minerals flotation, the separation experiments of mixed minerals and bauxite ore were carried out. The results of closed circuit test on the ore show that, using RL as collector, Na 2CO 3 and (NaPO 3) 6 as modifiers, the grade of Al 2O 3 and SiO 2 are respectively 70.74% and 6.37% in concentrate (Al/Si 11.11), and the recovery of Al 2O 3 can reach 90.52%.展开更多
The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test r...The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.展开更多
Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such ...Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such as group electronegativity, energy criterion, solubility product of chemicals and maximum wavelength of ultraviolet absorbency, have linear correlation with the first order group connectivity index (GCI) of polar group, and the related coefficients are all larger than 0.900. The GCI can be used to characterize the structure of groups, and is a sort of new effective structural parameter to study the quantitative structure activity relationship of flotation reagents.展开更多
Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill ...Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.展开更多
The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differentia...The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.展开更多
In order to offer high grade concentrate to produce alumina by Bayer, the reverse-flotation technology of bauxite was investigated. The results show that sodium hexmetaphosphate has different depression on the flotati...In order to offer high grade concentrate to produce alumina by Bayer, the reverse-flotation technology of bauxite was investigated. The results show that sodium hexmetaphosphate has different depression on the flotation of diaspore and kaolinite. The recoveries of diaspore decrease markedly with the increase of the concentration of sodium hexmetaphosphate with dodecyl-amine as collector. Fourier transform infrared spectra indicate that the absorbance band 875cm -1 of the asymmetric stretching vibration of bridge oxygen P—O—P shifts to 880cm -1 , and the 1264cm -1 of the asymmetric stretching vibration of the bridge PO2 shifts to 1267cm -1 in the diaspore’s spectra. This demonstrates that sodium hexmetaphosphate interacts through bridging PO2 groups with the Al atoms exposed on the diaspore and kaolinite surfaces to form P—O—Al bond. Adsorption measurements also testify that sodium hexmetaphosphate adsorbs easily on the surface of diaspore. The adsorption density of PO-3 on the surface of diaspore is about 4.7×10 -6 mol/m2, while that on the kaolinite is only about 3.5×10 -7 mol/m2 when pH value is 6.展开更多
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-s...Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.展开更多
基金Projects(52074139,51964027)supported by the National Natural Science Foundation of ChinaProject(KKS 2202152011)supported by the High-level Talents of Yunnan Province,China。
文摘Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.
基金Projects(52074356,U22A20170)supported by the National Natural Science Foundation of ChinaProject(2022YFC2904503)supported by the National Key R&D Program of China+4 种基金Project(2023SK2061)supported by the Special Fund for the Construction of Hunan Innovative Province,ChinaProject(2023CXQD002)supported by the Innovation-driven Project of Central South University,ChinaProject(2022RC1183)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(kq2009005)supported by the Changsha Science and Technology Project(Changsha Outstanding Innovative Youth Training Program),ChinaProject supported by the High-performance Computing Centers of Central South University,China。
文摘Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.
基金Project(52264022)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KJSKL-2025-17)supported by the Open Foundation of State Key Laboratory of Mineral Processing,China。
文摘Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
文摘Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also stu-(died.)The results show that in the presence of 2×10-4 mol·L-1CTAB, the surface charges of pyrophyllite, kaolinite and illite become more positive, and the contact angles of these three silicates also increase evidently in the pH range of 2-8, but the Zeta potentials and contact angles of diaspore change little. So, the floatability of the four minerals is in the following order: pyrophyllite>kaolinite≈illite>diaspore. The open-circuit flotation results also show that a bauxite concentrate with m(Al2O3)/m(SiO2) over 9.3 and Al2O3 recovery over 76% can be obtained from diasporic-bauxite ore. The result of XRD of the bauxite concentrate shows that pyrophyllite is easier to be removed from diasporic-bauxite than illite and kaolinite due to its better floatability.
文摘In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of butyl dixanthogen on the surface of stibnite and arsenopyrite. In this paper, their reducing kinetic difference of electrochemistry was confirmed by pure mineral flotation under controlled potential, the artificial SbAs bulk concentrate flotation separation and UVspectrophotometic analysis. The electrochemical separation of SbAs bulk concentrate has been carried out. qualified concentrate has been obtained. Sbconcentrate contains Sb 4944 %, As 044 %, Sbrecovery is 8783 % and Asconcentrate contains As 1096 %, Asrecovery is 9466 %.
文摘The effects of Mn2+ on the flotation behaviour of fine refractory antimony oxide and its flotationseparation from silicified limestone were studied. The principal gangue mineral, under the condition of PH7. 5 and in the presence of modified water glass through flotability test, measurements of inter facial potentialand adsorption, and X-ray diffraction technique were describled. The activation mechanism of Mn2+ in antimony oxide flotation is fully discussed via modern molecular orbit theory.
文摘The flotation behavior of quartz using N-(2-aminoethyl)-octadecanamide (AEOA ) as a collector was investigated.Zeta potential and infrared spectra were conducted to investigate the mechanism of the interaction of the quartz surface with the collector molecules. The results show that electrostatic force and hydrogen bond play an important role in governing the mechanism of flotation in acidic and alkaline media. The recoveries of quartz are (99.0%)-99.8% in the pH range of 3-11. The recovery of quartz is less dependent on AEOA concentration, mainly due to the formation of micellae in aqueous solution,and the adsorption density of AEOA on the quartz surface nearly remains constant.
基金Project(2014CB643402) supported by the National Basic Research Program of ChinaProject(CX2013B082) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Flotation behavior and adsorption mechanism of octyl hydroxamic acid(OHA)on wolframite were investigated through flotation experiments,adsorption tests,zeta-potential measurements,infrared spectroscopy and solution chemistry calculations.Results of flotation and adsorption experiments show that the maximum values of flotation recovery and adsorption capacity occur around p H 9.In term of the solution chemistry calculations,the concentration of metal hydroxamate is greater than that of metal tungstate and metal hydroxyl,and metal hydroxamate compounds are identified to be the main species on wolframite surface at p H region of 8-10,contributing to the increase of OHA adsorption and flotation performance.Results of zeta-potential and IR spectra demonstrate that OHA adsorbs onto wolframite surface by chemisorptions.Hydroxamate ions can bond with Mn_2+/Fe_2+cations of wolframite surface,forming metal hydroxamate compounds,which is a key factor in inducing the hydrophobicity of wolframite under the conditions of maximum flotation.
基金Projects(2020GDASYL-20200302009,2020GDASYL-20200302004,2019GDASYL-0501007)supported by Guandong Academy of Sciences,ChinaProject(2020YFC1909202)supported by Ministry of Science and Technology of China。
文摘In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolframite and cassiterite.The flotation performance and adsorption mechanism were investigated by micro/batch flotation,zeta potential measurements and density functional theory(DFT).The micro flotation results showed that the recoveries of scheelite,wolframite and cassiterite using PMOB as collector are 97.45%,95.77% and 90.08%,respectively,and the corresponding recoveries are 91.00%,84.30% and 84.67% for benzohydroxamic acid(BHA).The batch flotation results revealed that the collector dosage could be reduced by about 45% for PMOB compared with BHA,in the case of similar flotation indicators.Zeta potential measurements indicated that PMOB could be adsorbed on the mineral surfaces by chemisorption.Moreover,density functional theory(DFT)calculation results showed that the substituent group—OCH_(3)endues PMOB stronger electron donation ability and hydrophobicity compared with benzohydroxamic acid(BHA),pmethyl benzohydroxamic acid(PMB)and p-hydroxyl benzohydroxamic acid(PHB).
基金Project(50774094) supported by the National Natural Science Foundation of China
文摘The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation recovery of monoclinic pyrrhotite is larger than that of hexagonal pyrrhotite using different collectors.When butyl dithiophosphate is used as the collector,the recovery is larger than that by sodium butyl xanthate and sodium diethyl dithiocarbamate.At the pH values ranging from 6 to 9,monoclinic pyrrhotite can be floated well,and the flotation recovery is higher than 90%.Monoclinic and hexagonal pyrrhotites are more easily activated by Cu2+ in acidic conditions than in alkaline conditions.But Cu2+ cannot activate hexagonal pyrrhotite using sodium diethyldithiocarbamate as the collector.By the measurement of contact angle,it is indicated that monoclinic and hexagonal pyrrhotites float well and are easily activated by Cu2+ when dithiophosphate is used as the collector.Using sodium diethyl dithiocarbamate as a collector,the relationship between potential and pH range for pyrrhotite flotation is established.At pH 5,the optimal potential range for flotation of monoclinic pyrrhotite is about 125-580 mV(vs SHE),with the maximum flotation occurring at about 350 mV(vs SHE);the optimal potential range for flotation of hexagonal pyrrhotite is 200?580 mV(vs SHE),with the maximum flotation occurring at about 300 mV(vs SHE).
文摘The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Based on the results of single minerals flotation, the separation experiments of mixed minerals and bauxite ore were carried out. The results of closed circuit test on the ore show that, using RL as collector, Na 2CO 3 and (NaPO 3) 6 as modifiers, the grade of Al 2O 3 and SiO 2 are respectively 70.74% and 6.37% in concentrate (Al/Si 11.11), and the recovery of Al 2O 3 can reach 90.52%.
基金Project(50674102) supported by the National Natural Science Foundation of China
文摘The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.
文摘Topological method is applied firstly to calculate the group connectivity indexes of some flotation reagents for sulfide minerals and oxide minerals. The study reveals that some properties of flotation reagents, such as group electronegativity, energy criterion, solubility product of chemicals and maximum wavelength of ultraviolet absorbency, have linear correlation with the first order group connectivity index (GCI) of polar group, and the related coefficients are all larger than 0.900. The GCI can be used to characterize the structure of groups, and is a sort of new effective structural parameter to study the quantitative structure activity relationship of flotation reagents.
基金Project supported by the Chair in Mineral Processing at McGill University,under the Collaborative Research and Development Program of NSERC(Natural Sciences and Engineering Research Council of Canada)with industrial sponsorship from Vale,Teck Cominco,Xstrata Process Support,Agnico-Eagle,Shell Canada,Barrick Gold,COREM,SGS Lakefield Research and Flottec
文摘Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.
基金Project(2016RS2016) supported by Provincial Science and Technology Leader Program,Hunan,ChinaProject(2017zzts807) supported by Postgraduate Innovative Research Projects of Central South University,China
文摘The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.
文摘In order to offer high grade concentrate to produce alumina by Bayer, the reverse-flotation technology of bauxite was investigated. The results show that sodium hexmetaphosphate has different depression on the flotation of diaspore and kaolinite. The recoveries of diaspore decrease markedly with the increase of the concentration of sodium hexmetaphosphate with dodecyl-amine as collector. Fourier transform infrared spectra indicate that the absorbance band 875cm -1 of the asymmetric stretching vibration of bridge oxygen P—O—P shifts to 880cm -1 , and the 1264cm -1 of the asymmetric stretching vibration of the bridge PO2 shifts to 1267cm -1 in the diaspore’s spectra. This demonstrates that sodium hexmetaphosphate interacts through bridging PO2 groups with the Al atoms exposed on the diaspore and kaolinite surfaces to form P—O—Al bond. Adsorption measurements also testify that sodium hexmetaphosphate adsorbs easily on the surface of diaspore. The adsorption density of PO-3 on the surface of diaspore is about 4.7×10 -6 mol/m2, while that on the kaolinite is only about 3.5×10 -7 mol/m2 when pH value is 6.
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
基金Project(2012CB214905)supported by the National Basic Research Program of ChinaProject(51074157)supported by the National Natural Science Foundation of China
文摘Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.