期刊文献+
共找到2,504篇文章
< 1 2 126 >
每页显示 20 50 100
Research on Transfer Learning in Surface Defect Detection of Printed Products 被引量:1
1
作者 ZHU Xin-yu SI Zhan-jun CHEN Zhi-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期38-44,共7页
To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and tr... To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry. 展开更多
关键词 transfer learning UNSUPERVISED Defect detection PRINTING
在线阅读 下载PDF
Improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning
2
作者 ZHANG Wen-gang LIU Song-lin +3 位作者 WANG Lu-qi SUN Wei-xin ZHANG Yan-mei NIE Wen 《Journal of Central South University》 CSCD 2024年第11期3823-3837,共15页
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci... Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances. 展开更多
关键词 data-limited cases transfer learning landslide susceptibility machine learning normalization based on the parameters of the source domain
在线阅读 下载PDF
Maneuvering target tracking of UAV based on MN-DDPG and transfer learning 被引量:17
3
作者 Bo Li Zhi-peng Yang +2 位作者 Da-qing Chen Shi-yang Liang Hao Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期457-466,共10页
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble... Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments. 展开更多
关键词 UAVS Maneuvering target tracking Deep reinforcement learning MN-DDPG Mixed noises transfer learning
在线阅读 下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:2
4
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series transfer learning Online learning Ensemble learning Robust regularization
在线阅读 下载PDF
Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 被引量:4
5
作者 LIU Wenzhang DONG Lu +1 位作者 LIU Jian SUN Changyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期447-460,共14页
In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with... In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results. 展开更多
关键词 knowledge transfer multi-agent reinforcement learning(MARL) new agents
在线阅读 下载PDF
Range estimation of few-shot underwater sound source in shallow water based on transfer learning and residual CNN 被引量:4
6
作者 YAO Qihai WANG Yong YANG Yixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期839-850,共12页
Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in ... Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods. 展开更多
关键词 transfer learning residual convolutional neural network(CNN) few shot vertical array range estimation
在线阅读 下载PDF
Autonomous landing scene recognition based on transfer learning for drones 被引量:2
7
作者 DU Hao WANG Wei +1 位作者 WANG Xuerao WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期28-35,共8页
In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same sc... In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same scene has different representations in different altitudes, we employ a deep convolutional neural network(CNN) based on knowledge transfer and fine-tuning to solve the problem. Then, LandingScenes-7 dataset is established and divided into seven classes. Moreover, there is still a novelty detection problem in the classifier, and we address this by excluding other landing scenes using the approach of thresholding in the prediction stage. We employ the transfer learning method based on ResNeXt-50 backbone with the adaptive momentum(ADAM) optimization algorithm. We also compare ResNet-50 backbone and the momentum stochastic gradient descent(SGD) optimizer. Experiment results show that ResNeXt-50 based on the ADAM optimization algorithm has better performance. With a pre-trained model and fine-tuning, it can achieve 97.845 0% top-1 accuracy on the LandingScenes-7dataset, paving the way for drones to autonomously learn landing scenes. 展开更多
关键词 landing scene recognition convolutional neural network(CNN) transfer learning remote sensing image
在线阅读 下载PDF
Research on Automatic Diagnostic Technology of Soybean Leaf Diseases Based on Improved Transfer Learning
8
作者 Yu Xiao Jing Yong-dong Zheng Lu-lu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第2期62-72,共11页
Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer ... Soybean diseases and insect pests are important factors that affect the output and quality of the soybean,thus,it is necessary to do correct inspection and diagnosis on them.For this reason,based on improved transfer learning,a classification method of the soybean leaf diseases was proposed in this paper.In detail,this method first removed the complicated background in images and cut apart leaves from the entire image;second,the data-augmented method was applied to amplify the separated leaf disease image dataset to reduce overfitting;at last,the automatically fine-tuning convolutional neural network(AutoTun)was adopted to classify the soybean leaf diseases.The proposed method respectively reached 94.23%,93.51%and 94.91%of validation accuracy rates on VGG-16,ResNet-34 and DenseNet-121,and it was compared with the traditional fine-tuning method of transfer learning.The results indicated that the proposed method had superior to the traditional transfer learning method. 展开更多
关键词 transfer learning deep convolutional neural network classification recognition soybean disease
在线阅读 下载PDF
基于改进YOLOv8m的稻田害虫识别方法 被引量:3
9
作者 谭泗桥 陈涵 +4 位作者 朱磊 孙浩然 张政兵 尹丽 黄婉婉 《农业工程学报》 北大核心 2025年第2期185-195,共11页
为解决现有基于机器视觉的稻田害虫监测过程中存在的检测速度慢、小目标检测精度低、害虫堆积遮挡时检测精度低以及样本不平衡等问题,该研究提出了一种基于改进YOLOv8m模型的稻田害虫识别方法FieldSentinel-YOLOv8。该方法首先简化了YOL... 为解决现有基于机器视觉的稻田害虫监测过程中存在的检测速度慢、小目标检测精度低、害虫堆积遮挡时检测精度低以及样本不平衡等问题,该研究提出了一种基于改进YOLOv8m模型的稻田害虫识别方法FieldSentinel-YOLOv8。该方法首先简化了YOLOv8m模型,并用双检测头代替三检测头,以减少小目标细粒度信息的丢失,降低模型的复杂度;其次将卷积注意力模块CBAM(convolutional block attention module)添加到YOLOv8m,使模型抑制背景等一般特征信息,更加关注害虫区域,从而提高被遮挡害虫的识别准确率;最后使用Focal-CIoU Loss来替换CIoU Loss(complete intersection over union),以减少样本类别不平衡对模型精度的影响。FieldSentinel-YOLOv8模型的平均精度均值(mean average precisoin)mAP_(0.5)为73.64%,精确率为65.43%,召回率为75.17%,检测帧率为199.88帧/s。与原模型YOLOv8m相比,FieldSentinel-YOLOv8的模型参数量从25.86 M(million)降到10.34 M,所需浮点运算数从79.10 G(1 G=109)降到62.80 G,召回率、平均精度均值和检测帧率分别提升7.05、2.72个百分点和52.73帧/s。该研究还采用Pest24数据集作为源域,自建数据集作为目标域的迁移学习方法训练FieldSentinel-YOLOv8模型,得到高精度FieldSentinelTransferYOLOv8模型,进一步提升模型检测性能,使用迁移学习方法后,m AP_(0.5)再次提升3.36个百分点,达到77.00%,精确率为69.90%,召回率为77.73%。在自建数据集上进行模型对比试验,结果表明,FieldSentinel-YOLOv8模型具有较高的识别准确率及较强的鲁棒性,该模型的轻量化方法可为农业害虫的精准且快速识别提供技术参考。高精度FieldSentinelTransfer-YOLOv8模型精度的大幅提升,也表明迁移学习在农业害虫检测上提供了技术支持。 展开更多
关键词 虫害 深度学习 图像识别 YOLOv8m 卷积注意力模块 Focal-CIoU 迁移学习
在线阅读 下载PDF
基于改进Res2Net与迁移学习的水果图像分类 被引量:3
10
作者 吴迪 肖衍 +2 位作者 沈学军 万琴 陈子涵 《电子科技大学学报》 北大核心 2025年第1期62-71,共10页
针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成... 针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成卷积核,利用meta-ACON激活函数优化ReLU激活函数,动态学习激活函数的线性和非线性,自适应选择是否激活神经元;其次,采用基于模型迁移的训练方式进一步提升分类的效率与鲁棒性。实验结果表明,该算法在Fruit-Dataset和Fruits-360数据集上的测试准确率相比Res2Net提升了1.2%和1.0%,召回率相比Res2Net提升了1.13%和0.89%,有效提升了水果图像分类性能。 展开更多
关键词 图像分类 Res2Net 动态多尺度融合注意力 激活函数 迁移学习
在线阅读 下载PDF
面向雷达目标识别的一种在线迁移学习框架 被引量:1
11
作者 杨予昊 孙晶明 +2 位作者 张强 晏媛 王众 《现代雷达》 北大核心 2025年第5期16-20,共5页
可靠、高效、精准的目标识别性能需求,与完备的目标数据库构建困难之间的矛盾,要求雷达目标识别系统具备动态学习能力,动态实现数据、模型的更新与识别能力的跃升。而样本自标注、模型自更新等功能的实现是达到这一目标的前提条件。针... 可靠、高效、精准的目标识别性能需求,与完备的目标数据库构建困难之间的矛盾,要求雷达目标识别系统具备动态学习能力,动态实现数据、模型的更新与识别能力的跃升。而样本自标注、模型自更新等功能的实现是达到这一目标的前提条件。针对雷达目标识别在实际应用中的性能自提升需求,通过借鉴在线学习与迁移学习的思想,提出一种在线迁移学习框架,通过结合在线学习和迁移学习技术,采用闭环结构,通过样本标注和模型微调,实现模型的自我迭代优化,可自动完成样本标注、模型更新等任务。基于仿真数据的实验结果表明,所提框架可显著提升雷达目标识别的准确性,具有流程简单、部署快捷的优点,具有较强的工程实用性。 展开更多
关键词 雷达目标识别 样本自标注 模型自更新 在线学习 迁移学习
在线阅读 下载PDF
Ghost-YOLO:复杂环境下混凝土结构裂缝病害检测网络 被引量:5
12
作者 陈智丽 张伍彪 +1 位作者 王冰 李宇鹏 《计算机应用与软件》 北大核心 2025年第2期171-180,共10页
裂缝是混凝土结构桥梁最严重的病害之一,影响到整个桥梁结构的安全。提出一种新的Ghost-YOLO网络,用于检测不同环境下的混凝土结构裂缝病害。该网络有效结合GhostNet与YOLOv4网络优点,可在大幅减少网络模型参数的同时提高检测精度。为... 裂缝是混凝土结构桥梁最严重的病害之一,影响到整个桥梁结构的安全。提出一种新的Ghost-YOLO网络,用于检测不同环境下的混凝土结构裂缝病害。该网络有效结合GhostNet与YOLOv4网络优点,可在大幅减少网络模型参数的同时提高检测精度。为全面评估网络检测性能,构建不同环境下的大规模混凝土结构病害数据集,并应用迁移学习手段,成功将水上裂缝检测模型迁移至水下环境和户外实际工程环境。通过消融实验发现,Ghost-YOLO网络在不同复杂环境下均表现出较强的检测能力。将Ghost-YOLO网络与YOLOv4、Faster R-CNN、VFNet、YOLOF等先进的目标检测网络进行对比,结果显示Ghost-YOLO网络在裂缝检测准确度和速度方面都具有明显的优势。 展开更多
关键词 深度学习 GhostNet YOLOv4 裂缝检测 水下 迁移学习
在线阅读 下载PDF
机器学习方法预测油气产量技术发展现状及前景展望 被引量:1
13
作者 谢坤 田轩硕 +5 位作者 刘长龙 邵明 刘延春 高铭宣 袁世亮 张宝岩 《特种油气藏》 北大核心 2025年第4期14-24,共11页
受油气开发过程中储层物性、流体性质和工艺措施的复杂多变性影响,生产数据的分析利用程度多取决于石油科技工作者的专业经验,计算成本和时间成本高,难以满足油气藏高效开发需求,亟待发现更加高效的油气产量预测方法。近年来,以深度神... 受油气开发过程中储层物性、流体性质和工艺措施的复杂多变性影响,生产数据的分析利用程度多取决于石油科技工作者的专业经验,计算成本和时间成本高,难以满足油气藏高效开发需求,亟待发现更加高效的油气产量预测方法。近年来,以深度神经网络、随机森林算法和迁移学习为代表的机器学习方法凭借处理高维数据、捕捉时序数据长期依赖关系和提取开发数据特征等方面的独特优势,在油气产量预测中取得了显著应用效果。该文通过对常用油气产量预测机器学习方法的原理及其优缺点进行分析,阐述了机器学习方法在油气产量预测领域的应用现状,总结了应用过程中潜在的问题,同时对油气产量预测方法的发展前景进行展望。未来,一方面应加强对物理约束融入机器学习模型的研究,提高模型的可解释性,避免过于理想化的预测结果;另一方面要开发适合小样本情况下的算法和迁移学习技术,充分利用历史生产数据,为油气产量预测提供更好的数据分析技术支持。该研究对油气产量的智能预测技术完善具有理论指导意义。 展开更多
关键词 油气田开发 产量预测 机器学习 神经网络 迁移学习
在线阅读 下载PDF
基于EfficientNetV2-RetNet的端到端中文管制语音识别 被引量:1
14
作者 梁海军 常瀚文 +2 位作者 何一民 赵志伟 孔建国 《电讯技术》 北大核心 2025年第2期254-260,共7页
自动语音识别(Automatic Speech Recognition, ASR)技术在空中交通管制(Air Traffic Control, ATC)领域的应用有望提高通信效率、减少人为错误、提升安全性,并促进航空交通管理系统的创新和改进。然而,由于ATC通信通常涉及敏感信息,获... 自动语音识别(Automatic Speech Recognition, ASR)技术在空中交通管制(Air Traffic Control, ATC)领域的应用有望提高通信效率、减少人为错误、提升安全性,并促进航空交通管理系统的创新和改进。然而,由于ATC通信通常涉及敏感信息,获取大量带有标签的ATC语音数据较为困难,这给构建高准确度的ASR系统带来了巨大挑战。基于Retentive Network(RetNet)和迁移学习设计了一种新的端到端ASR框架EfficientNetV2-RetNet-CTC,用于ATC系统。EfficientNetV2的多层卷积结构有助于对语音信号提取更复杂的特征表示。RetNet使用多尺度保持机制学习序列数据上的全局时间动态,可以非常高效地处理长距离依赖性。连接时序分类不用强制对齐标签且标签可变长。此外,迁移学习通过在源任务上学习的知识来改善在目标任务上的性能,解决了民航领域数据资源稀缺的问题且提高了模型的泛化能力。实验结果表明,所设计的模型优于其他基线,在Aishell语料库上预训练的最低词错误率为7.6%和8.7%,在ATC语料库上降至5.6%和6.8%。 展开更多
关键词 空中交通管制 自动语音识别 端到端深度学习 迁移学习
在线阅读 下载PDF
基于一维卷积神经网络的钢轨波磨迁移诊断方法 被引量:2
15
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
基于多模态对比学习的输电线路螺栓缺陷分类 被引量:1
16
作者 张珂 郑朝烨 +2 位作者 石超君 赵振兵 肖扬杰 《高电压技术》 北大核心 2025年第2期630-641,共12页
输电线路巡检中采集的螺栓图像有分辨率低、视觉信息不足的特点。针对传统图像分类模型难以从螺栓图像中学习到语义丰富的视觉表征问题,提出了一种基于多模态对比学习的输电线路螺栓缺陷分类方法。首先,为了将文本中螺栓相关的语义信息... 输电线路巡检中采集的螺栓图像有分辨率低、视觉信息不足的特点。针对传统图像分类模型难以从螺栓图像中学习到语义丰富的视觉表征问题,提出了一种基于多模态对比学习的输电线路螺栓缺陷分类方法。首先,为了将文本中螺栓相关的语义信息和先验知识以跨模态的方式注入视觉表征,提出了一种结合多模态对比预训练和监督式微调的二阶段训练算法;其次,为了缓解多模态对比预训练中的过拟合问题,提出了标签平滑的信息噪声对比估计损失(info noise contrastive estimation loss with label smoothing,infoNCE-LS),以提高预训练视觉表征的泛化性能;最后,针对上下游任务的不匹配问题,设计了3种基于文本提示的分类头,以改善预训练视觉表征在监督式微调阶段的迁移学习效果。实验结果表明:该文基于Res Net50和ViT构建的两种模型在螺栓缺陷分类数据集上的准确率分别为92.3%和97.4%,相比基线分别提高了2.4%和5.8%。研究实现了从文本到图像的语义信息跨模态补充,为螺栓缺陷识别的研究提供了新的思路。 展开更多
关键词 输电线路 螺栓缺陷分类 多模态预训练 对比学习 迁移学习
在线阅读 下载PDF
基于回声状态网络的智能合约漏洞检测方法 被引量:1
17
作者 刘春霞 徐晗颖 +2 位作者 高改梅 党伟超 李子路 《计算机应用》 北大核心 2025年第1期153-161,共9页
区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确... 区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确率低的问题,而且,这些方法无法对新的合约漏洞进行检测。针对上述问题,提出一种基于回声状态网络(ESN)的智能合约漏洞检测方法。首先,根据合约图,对不同语义、语法边进行学习,并利用Skip-Gram模型训练得到特征向量;其次,结合ESN和迁移学习,实现对新合约漏洞的迁移扩展,以提高漏洞检测率;最后,在Etherscan平台搜集的智能合约数据集上进行实验。实验结果表明,所提方法的准确率、精确率、召回率和F1分数分别达到了94.30%、97.54%、91.68%和94.52%,与双向长短时记忆(BLSTM)网络、自注意力机制的双向长短时记忆(BLSTM-ATT)相比,所提方法的准确率分别提高了5.93和11.75个百分点,漏洞检测性能更优。消融实验也进一步验证了ESN对智能合约漏洞检测的有效性。 展开更多
关键词 漏洞检测 智能合约 回声状态网络 迁移学习 区块链
在线阅读 下载PDF
基于深度迁移学习的Ti-6Al-4V合金微铣削毛刺尺寸预测 被引量:1
18
作者 吴凤和 王宇 +3 位作者 张会龙 张宁 马轩 王志勇 《制造技术与机床》 北大核心 2025年第4期63-69,共7页
针对钛合金微铣削加工易产生毛刺缺陷影响使用的问题,提出一种基于深度迁移学习的Ti-6Al-4V微铣削顶部毛刺尺寸预测方法。首先,以工艺参数(主轴转速、轴向切深、径向切宽和每齿进给量)为网络输入,以顶部毛刺长度为预测目标,建立了微铣... 针对钛合金微铣削加工易产生毛刺缺陷影响使用的问题,提出一种基于深度迁移学习的Ti-6Al-4V微铣削顶部毛刺尺寸预测方法。首先,以工艺参数(主轴转速、轴向切深、径向切宽和每齿进给量)为网络输入,以顶部毛刺长度为预测目标,建立了微铣削毛刺尺寸的预测模型。其次,使用625个切削仿真样本进行预训练。最后,基于迁移学习机制,借助100个切削试验样本对预训练结果进行微调,从而将仿真规律迁移至试验规律。结果表明,迁移学习模型对顺、逆铣两侧毛刺尺寸的平均预测精度分别达到了95.77%、95.45%,为钛合金微铣削毛刺的预测及控制提供了一种有效方法。 展开更多
关键词 微铣削毛刺 TI-6AL-4V合金 毛刺 尺寸预测 迁移学习 深度学习
在线阅读 下载PDF
智能物联网中高效安全的自适应量化联邦学习 被引量:2
19
作者 马海英 沈金宇 +2 位作者 杨天玲 仇健 王占君 《计算机应用研究》 北大核心 2025年第8期2503-2510,共8页
针对现有自适应量化联邦学习存在参与者本地模型参数隐私泄露的问题,提出一种适合智能物联网的高效安全的自适应量化联邦学习方案。该方案利用自适应量化技术减少参与者的通信开销,设置两个聚合服务器,将Diffie-Hellman密钥交换协议、... 针对现有自适应量化联邦学习存在参与者本地模型参数隐私泄露的问题,提出一种适合智能物联网的高效安全的自适应量化联邦学习方案。该方案利用自适应量化技术减少参与者的通信开销,设置两个聚合服务器,将Diffie-Hellman密钥交换协议、秘密共享方案和不经意传输协议相结合,构造一种保护本地模型参数隐私的安全聚合协议,并在合理假设下证明所提方案的安全性。实验结果表明该方案能够获得较高准确率的全局模型,极大减少了参与者的通信开销和隐私保护计算开销,非常适用于智能物联网中资源受限的轻量级物联网设备。 展开更多
关键词 联邦学习 隐私保护 自适应量化 秘密共享 不经意传输协议
在线阅读 下载PDF
基于角域重采样和特征强化的电机滚动轴承故障迁移诊断方法 被引量:1
20
作者 王攀攀 李兴宇 +1 位作者 张成 韩丽 《电工技术学报》 北大核心 2025年第12期3905-3916,共12页
为了降低模型对数据的依赖,实现电机滚动轴承故障从恒转速工况到变转速工况的单源域迁移诊断,提出一种基于角域重采样和特征强化的故障诊断方法。首先,对不同转速工况下的时域振动信号进行角域重采样,降低由转速变化引起的时频分布差异... 为了降低模型对数据的依赖,实现电机滚动轴承故障从恒转速工况到变转速工况的单源域迁移诊断,提出一种基于角域重采样和特征强化的故障诊断方法。首先,对不同转速工况下的时域振动信号进行角域重采样,降低由转速变化引起的时频分布差异;然后,以协方差损失作为样本特征间的相似性度量,并借助领域对抗网络的思想,扩大不同类别特征间的距离,达到特征强化的目的;最后,利用源域振动数据(恒转速)训练后的卷积神经网络对变转速工况下的故障进行辨识,实现滚动轴承故障的跨转速迁移诊断。实验结果表明,所提方法在完全不涉及目标域数据的情况下,仍能准确地进行故障分类,且其正确率高达97.29%,降低了模型对数据的依赖。 展开更多
关键词 电机轴承故障 迁移学习 卷积神经网络 角域重采样 特征强化
在线阅读 下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部