Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous chan...Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous channel conditions need to be considered.In this paper,a practical and novel multi-source spinal coding(MSSC)scheme is developed for coded caching multicast transmissions under heterogeneous channel conditions.By exploring joint design of network coding and spinal coding(SC),MSSC can achieve unequal link rates in multicast transmissions for different users.Moreover,by leveraging the rateless feature of SC in our design,MSSC can well adapt the link rates of all users in multicast transmissions without any feedback of time-varying channel conditions.A maximum likelihood(ML)based decoding process for MSSC is also developed,which can achieve a linear complexity with respect to the user number in the multicast transmission.Simulation results validate the effectiveness of the MSSC scheme.Compared to the existing scheme,the sum rate of MSSC in multicast transmissions is improved by about 20%.When applying MSSC in coded caching systems,the total transmission time can be reduced by up to 48% for time-varying channels.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
In this work, the homomorphism of the classic linear block code in linear network coding for the case of binary field and its extensions is studied. It is proved that the classic linear error-control block code is hom...In this work, the homomorphism of the classic linear block code in linear network coding for the case of binary field and its extensions is studied. It is proved that the classic linear error-control block code is homomorphic network error-control code in network coding. That is, if the source packets at the source node for a linear network coding are precoded using a linear block code, then every packet flowing in the network regarding to the source satisfies the same constraints as the source. As a consequence, error detection and correction can be performed at every intermediate nodes of multicast flow, rather than only at the destination node in the conventional way, which can help to identify and correct errors timely at the error-corrupted link and save the cost of forwarding error-corrupted data to the destination node when the intermediate nodes are ignorant of the errors. In addition, three examples are demonstrated which show that homomorphic linear code can be combined with homomorphic signature, McEliece public-key cryptosystem and unequal error protection respectively and thus have a great potential of practical utility.展开更多
A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with mul...A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.展开更多
Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem s...Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.展开更多
Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions...Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.展开更多
Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic char...Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.展开更多
Energy-efficient communications is crucial for wireless sensor networks(WSN) where energy consumption is constrained. The transmission and reception energy can be saved by applying network coding to many wireless comm...Energy-efficient communications is crucial for wireless sensor networks(WSN) where energy consumption is constrained. The transmission and reception energy can be saved by applying network coding to many wireless communications systems. In this paper,we present a coded cooperation scheme which employs network coding to WSN. In the scheme,the partner node forwards the combination of the source data and its own data instead of sending the source data alone. Afterward,both of the system block error rates(BLERs) and energy performance are evaluated. Experiment results show that the proposed scheme has higher energy efficiency. When Noise power spectral density is-171dBm/Hz,the energy consumption of the coded cooperation scheme is 81.1% lower than that of the single-path scheme,43.9% lower than that of the cooperation scheme to reach the target average BLER of 10-2. When the channel condition is getting worse,the energy saving effect is more obvious.展开更多
This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formu...This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formulated, where the average bandwidth utilization ratio and the average transmission delay are both to be minimized. To address the problem, we propose a novel multiobjective artificial bee colony algorithm, with two performance enhancing schemes integrated. The first scheme is an elitism-based food source generation scheme for scout bees, where for each scout bee, a new food source is generated by either recombining two elite solutions randomly selected from an archive or sampling the probabilistic distribution model built from all elite solutions in this archive. This scheme provides scouts with high-quality and diversified food sources and thus helps to strengthen the global exploration. The second one is a Pareto local search operator with the concept of path relinking integrated. This scheme is incorporated into the onlooker bee phase for exploring neighboring areas of promising food sources and hence enhances the local exploitation. Experimental results show that the proposed algorithm performs better than a number of state-of-the-art multiobjective evolutionary algorithms in terms of the approximated Pareto-optimal front.展开更多
In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided ...In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.展开更多
Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-com...Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.展开更多
A new Network Coding mechanism in WSNs(Wireless Sensor Networks), which is named COEQ and aims at balancing coding opportunities, energy and QoS, is proposed and analyzed. Implemented on the basis of traditional AODV ...A new Network Coding mechanism in WSNs(Wireless Sensor Networks), which is named COEQ and aims at balancing coding opportunities, energy and QoS, is proposed and analyzed. Implemented on the basis of traditional AODV protocol, COEQ evaluates several metrics of paths comprehensively with TOPSIS method including minimum remaining energy, coding opportunities, QoS and so on, so as to select the optimal transmitting route. Experiments on NS[2] show that COEQ can improve throughput and save energy when the transmitting rate is low.展开更多
This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S...This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o...To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.展开更多
In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by National Natural Science Foundation of China(No.61801290 and 61771312).
文摘Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous channel conditions need to be considered.In this paper,a practical and novel multi-source spinal coding(MSSC)scheme is developed for coded caching multicast transmissions under heterogeneous channel conditions.By exploring joint design of network coding and spinal coding(SC),MSSC can achieve unequal link rates in multicast transmissions for different users.Moreover,by leveraging the rateless feature of SC in our design,MSSC can well adapt the link rates of all users in multicast transmissions without any feedback of time-varying channel conditions.A maximum likelihood(ML)based decoding process for MSSC is also developed,which can achieve a linear complexity with respect to the user number in the multicast transmission.Simulation results validate the effectiveness of the MSSC scheme.Compared to the existing scheme,the sum rate of MSSC in multicast transmissions is improved by about 20%.When applying MSSC in coded caching systems,the total transmission time can be reduced by up to 48% for time-varying channels.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by Natural Science Foundation of China (No.61271258)
文摘In this work, the homomorphism of the classic linear block code in linear network coding for the case of binary field and its extensions is studied. It is proved that the classic linear error-control block code is homomorphic network error-control code in network coding. That is, if the source packets at the source node for a linear network coding are precoded using a linear block code, then every packet flowing in the network regarding to the source satisfies the same constraints as the source. As a consequence, error detection and correction can be performed at every intermediate nodes of multicast flow, rather than only at the destination node in the conventional way, which can help to identify and correct errors timely at the error-corrupted link and save the cost of forwarding error-corrupted data to the destination node when the intermediate nodes are ignorant of the errors. In addition, three examples are demonstrated which show that homomorphic linear code can be combined with homomorphic signature, McEliece public-key cryptosystem and unequal error protection respectively and thus have a great potential of practical utility.
基金Supported by the Postdoctoral Science Foundation of China(2014M561694)the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.
基金supported by the National Natural Science Foundation of China(Grant No.11371290,No.61271174,No. 61301178)the Science and Technology Innovation Foundation of Xi'an(Grant No. CXY1352WL28)
文摘Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.
基金National Natural Science Foundation of China under Grant No. 60903196,60903175National Critical Patented Projects in the Next Generation Broadband Wireless Mobile Communication Network under Grant No. 2010ZX03006-001-01+1 种基金National High Technical Research and Development Program of China under Grant No. 2009AA01Z418Educational Commission of Hubei Province of China under Grant No. D20114401
文摘Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.
基金support in part from the National Natural Science Foundation of China (No. 60962002)the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning+1 种基金the Foundation of Guangxi Key Laboratory of Information and Communication (NO. 20904)the Scientific Research Foundation of Guangxi University (Grant No.XBZ091006)
文摘Energy-efficient communications is crucial for wireless sensor networks(WSN) where energy consumption is constrained. The transmission and reception energy can be saved by applying network coding to many wireless communications systems. In this paper,we present a coded cooperation scheme which employs network coding to WSN. In the scheme,the partner node forwards the combination of the source data and its own data instead of sending the source data alone. Afterward,both of the system block error rates(BLERs) and energy performance are evaluated. Experiment results show that the proposed scheme has higher energy efficiency. When Noise power spectral density is-171dBm/Hz,the energy consumption of the coded cooperation scheme is 81.1% lower than that of the single-path scheme,43.9% lower than that of the cooperation scheme to reach the target average BLER of 10-2. When the channel condition is getting worse,the energy saving effect is more obvious.
基金supported in part by National Natural Science Foundation of China (No.61505168, No. 61802319) the Fundamental Research Funds for the Central Universities, P. R. China
文摘This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formulated, where the average bandwidth utilization ratio and the average transmission delay are both to be minimized. To address the problem, we propose a novel multiobjective artificial bee colony algorithm, with two performance enhancing schemes integrated. The first scheme is an elitism-based food source generation scheme for scout bees, where for each scout bee, a new food source is generated by either recombining two elite solutions randomly selected from an archive or sampling the probabilistic distribution model built from all elite solutions in this archive. This scheme provides scouts with high-quality and diversified food sources and thus helps to strengthen the global exploration. The second one is a Pareto local search operator with the concept of path relinking integrated. This scheme is incorporated into the onlooker bee phase for exploring neighboring areas of promising food sources and hence enhances the local exploitation. Experimental results show that the proposed algorithm performs better than a number of state-of-the-art multiobjective evolutionary algorithms in terms of the approximated Pareto-optimal front.
基金supported by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University under Grant No.RCS2012ZT008the National Key Basic Research Program of China(973Program)under Grant No.2012CB316100(2)+1 种基金the National Natural Science Foundation of China under Grants No.61201203,No.61171064the Fundamental Research Funds for the Central Universities under Grant No.2012JBM030
文摘In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.
基金supported by the National Natural Science Foundation of China (60502046, 60573034)863 Foundation of China (2007AA01Z215)
文摘Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.
基金supported by the Chinese National Natural Science Foundation(No:61070204,61101108)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(11530500015)
文摘A new Network Coding mechanism in WSNs(Wireless Sensor Networks), which is named COEQ and aims at balancing coding opportunities, energy and QoS, is proposed and analyzed. Implemented on the basis of traditional AODV protocol, COEQ evaluates several metrics of paths comprehensively with TOPSIS method including minimum remaining energy, coding opportunities, QoS and so on, so as to select the optimal transmitting route. Experiments on NS[2] show that COEQ can improve throughput and save energy when the transmitting rate is low.
基金supported by the National Natural Science Foundation of China ( No . 61602034 )the Beijing Natural Science Foundation (No. 4162049)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No. 2014D03)the Fundamental Research Funds for the Central Universities Beijing Jiaotong University (No. 2016JBM015)the NationalHigh Technology Research and Development Program of China (863 Program) (No. 2015AA015702)
文摘This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
基金supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
文摘To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.