期刊文献+
共找到5,866篇文章
< 1 2 250 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
2
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
在线阅读 下载PDF
Belief exponential divergence for D-S evidence theory and its application in multi-source information fusion 被引量:2
3
作者 DUAN Xiaobo FAN Qiucen +1 位作者 BI Wenhao ZHANG An 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1454-1468,共15页
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss... Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences. 展开更多
关键词 Dempster-Shafer(D-S)evidence theory multi-source information fusion conflict measurement belief expo-nential divergence(BED) target recognition
在线阅读 下载PDF
Multi-source image fusion algorithm based on fast weighted guided filter 被引量:6
4
作者 WANG Jian YANG Ke +2 位作者 REN Ping QIN Chunxia ZHANG Xiufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期831-840,共10页
In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Fi... In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation. 展开更多
关键词 FAST GUIDED FILTER image fusion visual feature DECISION map
在线阅读 下载PDF
Feature fusion method for edge detection of color images 被引量:4
5
作者 Ma Yu Gu Xiaodong Wang Yuanyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期394-399,共6页
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected... A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments. 展开更多
关键词 color image processing edge detection feature extraction feature fusion
在线阅读 下载PDF
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:13
6
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection Convolutional neural network feature fusion Infrared target
在线阅读 下载PDF
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
7
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
8
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
在线阅读 下载PDF
基于Feature Forest的图像检索 被引量:2
9
作者 宋金龙 胡福乔 赵宇明 《计算机工程》 CAS CSCD 北大核心 2010年第21期231-233,共3页
基于语义树(Vocabulary tree)的图像检索方法是效果最好的方法之一,但目前存在的基于Vocabulary tree的方法都是建立在一种特征上的,当图像库比较大时很难达到理想的效果。基于此,提出一种多特征检索结果的融合框架Feature forest,根据... 基于语义树(Vocabulary tree)的图像检索方法是效果最好的方法之一,但目前存在的基于Vocabulary tree的方法都是建立在一种特征上的,当图像库比较大时很难达到理想的效果。基于此,提出一种多特征检索结果的融合框架Feature forest,根据各种特征的检索结果好坏动态确定对应特征树的权值。实验结果证明,相对于单种特征的特征树,该方法有一定的优越性。 展开更多
关键词 语义树 特征融合 feature forest框架 SURF特征 HOG特征
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
10
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
11
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
在线阅读 下载PDF
The 3D Face Recognition Algorithm Fusing Multi-geometry Features 被引量:3
12
作者 SUN Yan-Feng TANG Heng-Liang YIN Bao-Cai 《自动化学报》 EI CSCD 北大核心 2008年第12期1483-1489,共7页
因为它的 insensitivity, 3D 脸识别吸引越来越多的注意到照明和姿势的变化。有在这个话题要解决的许多关键问题,例如 3D 脸表示和有效多特征熔化。在这份报纸,一个新奇 3D 脸识别算法被建议,它的性能在 BJUT-3D 脸数据库上被表明... 因为它的 insensitivity, 3D 脸识别吸引越来越多的注意到照明和姿势的变化。有在这个话题要解决的许多关键问题,例如 3D 脸表示和有效多特征熔化。在这份报纸,一个新奇 3D 脸识别算法被建议,它的性能在 BJUT-3D 脸数据库上被表明。这个算法选择脸表面性质和相对关系矩阵的原则部件为脸表示特征。为每个特征的类似公制被定义。特征熔化策略被建议。它基于菲希尔是线性加权的策略线性判别式分析。最后,介绍算法在 BJUT-3D 脸数据库上被测试。算法和熔化策略的表演是令人满意的,这被结束。 展开更多
关键词 三维系统 人脸识别系统 计算方法 几何特征
在线阅读 下载PDF
改进YOLOv8的无人机航拍图像目标检测算法 被引量:6
13
作者 梁燕 何孝武 +1 位作者 邵凯 陈俊宏 《计算机工程与应用》 北大核心 2025年第1期121-130,共10页
针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EF... 针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EFEM),避免小目标特征消失在冗余信息中。在颈部设计了一种双重跨尺度加权特征融合方法(dual cross-scale weighted feature-fusion,DCWF),融合多尺度信息的同时抑制噪声干扰,提升特征表达能力。通过构建一种参数共享检测头(parameter-shared detection header,PSDH),使回归和分类任务实现参数共享,保证检测精度的同时有效降低了模型的参数量。所提模型在VisDrone-2019数据集上的精度(P)和召回率(R)分别达到54.0%、42.5%;相比于原始YOLOv8s模型,mAP50提高了5.0个百分点,达到44.5%,且参数量减少了55.8%,仅有4.94×106;在DOTAv1.0遥感数据集上,mAP50达到71.9%,仍具有较好的泛化能力。 展开更多
关键词 目标检测 无人机航拍图像 YOLOv8 小目标 特征融合
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:3
14
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于跨模态特征重构与解耦网络的多模态抑郁症检测方法 被引量:1
15
作者 赵小明 谌自强 张石清 《计算机应用研究》 北大核心 2025年第1期236-241,共6页
抑郁症是一种广泛而严重的心理健康障碍,需要早期检测以便进行有效的干预。因为跨模态之间存在的信息冗余和模态间的异质性,集成音频和文本模态的自动化抑郁症检测是一个具有挑战性但重要的问题,先前的研究通常未能充分地明确学习音频-... 抑郁症是一种广泛而严重的心理健康障碍,需要早期检测以便进行有效的干预。因为跨模态之间存在的信息冗余和模态间的异质性,集成音频和文本模态的自动化抑郁症检测是一个具有挑战性但重要的问题,先前的研究通常未能充分地明确学习音频-文本模态的相互作用以用于抑郁症检测。为了解决这些问题,提出了基于跨模态特征重构与解耦网络的多模态抑郁症检测方法(CFRDN)。该方法以文本作为核心模态,引导模型重构音频特征用于跨模态特征解耦任务。该框架旨在从文本引导重构的音频特征中解离共享和私有特征,以供后续的多模态融合使用。在DAIC-WoZ和E-DAIC数据集上进行了充分的实验,结果显示所提方法在多模态抑郁症检测任务上优于现有技术。 展开更多
关键词 多模态 抑郁症检测 特征重构 特征解耦 特征融合
在线阅读 下载PDF
基于注意力机制和特征融合的井下轻量级人员检测方法 被引量:3
16
作者 王帅 杨伟 +2 位作者 李宇翔 吴佳奇 杨维 《煤炭科学技术》 北大核心 2025年第4期383-392,共10页
煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量... 煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量级人员检测方法YOLOv5-CWG。首先,在骨干网络中嵌入坐标注意力机制(Coordinate Attention)自适应的调整特征图中每个通道的权重,增强特征的表达能力,提高模型在低照度、粉尘影响严重以及对比度低的不利条件下对待检测人员目标的关注度,更精确地定位和识别人员目标。其次,通过加权多尺度特征融合模块(Weighted multiscale feature fusion moule)引入可学习的权重赋予特征层不同的关注度,使网络有效融合浅层位置特征和高层语义信息,增强模型的信息提取能力,更好地区分目标区域和背景噪声,从而提高模型的抗干扰能力。增加1个P2层的检测头,提升较小目标的检测和定位精度。引入SIoU损失函数代替原损失函数加快模型收敛。最后,引入Ghost模块优化骨干网络,可以在不损失模型性能的前提下降低模型的参数量,提高检测速度,使得模型更容易部署在资源受限的设备上。结果表明,提出的YOLOv5-CWG算法在煤矿井下人员检测数据集(UMPDD)上的mAP达到了97.5%,相较于YOLOv5s提高了7.3%,计算量减少了27.6%,FPS提高了6.3。所提算法显著提高了煤矿井下人员检测精度,有效解决了亮度低和光照不均引起的人员检测困难问题。 展开更多
关键词 人员检测 YOLOv5 注意力机制 轻量化 特征融合
在线阅读 下载PDF
多尺度特征提取与融合的红外图像增强算法 被引量:6
17
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
在线阅读 下载PDF
边缘感知增强的煤矿井下视觉SLAM方法 被引量:2
18
作者 牟琦 梁鑫 +2 位作者 郭媛婕 王煜豪 李占利 《煤田地质与勘探》 北大核心 2025年第3期231-242,共12页
【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘... 【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。 展开更多
关键词 视觉SLAM 特征退化 边缘感知 图像增强 点线特征融合 TUM数据集
在线阅读 下载PDF
基于LDF-YOLO的小目标检测方法 被引量:1
19
作者 刘洋 任旭虎 +1 位作者 刘宝弟 刘伟锋 《电子测量技术》 北大核心 2025年第12期156-165,共10页
小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络... 小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络中引入了特征转换模块,设计了针对微小物体的检测头LP-Detect;其次,借鉴残差门控机制和局部特征增强机制设计了LR-C2f模块,增强模型提取局部特征的能力;最后,融入了局部特征增强模块,以强化骨干网络提取小目标信息的能力。在公开数据集Tiny Person上,LDF-YOLO比原YOLOv8在mAP0.5上提高了4.5%,召回率提高了5.5%,实验结果验证了改进方法的有效性,同时在NWPU VHR-10和VisDrone2019数据集上做了泛化对比实验,经实验表明各项指标均有提升。 展开更多
关键词 小目标检测 YOLOv8 残差门控机制 特征转换 特征融合
在线阅读 下载PDF
基于特征分块与域间融合的跨域足迹图像检索方法 被引量:2
20
作者 张艳 申多 +2 位作者 李增辉 朱明 粟娇娇 《计算机辅助设计与图形学学报》 北大核心 2025年第2期303-312,共10页
为了解决现有图像检索方法难以提取跨域足迹图像的高区分性域共享特征等问题,提出了一种基于特征分块与域间融合的跨域足迹图像检索方法.首先,以ResNet50为主干网络提取足迹图像全局特征;然后通过水平分块特征提取方法获取更具鉴别性的... 为了解决现有图像检索方法难以提取跨域足迹图像的高区分性域共享特征等问题,提出了一种基于特征分块与域间融合的跨域足迹图像检索方法.首先,以ResNet50为主干网络提取足迹图像全局特征;然后通过水平分块特征提取方法获取更具鉴别性的特征;最后,采用跨域特征融合方法提取域共享信息,并设计均衡损失以优化融合特征.在自行采集的200人跨域足迹图像数据集上进行实验,在光学检索压力及压力检索光学2种模式下Rank-1分别达到91.38%和84.50%,验证了所提方法的有效性. 展开更多
关键词 图像检索 跨域足迹 特征分块 特征融合 均衡损失
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部