期刊文献+
共找到1,845篇文章
< 1 2 93 >
每页显示 20 50 100
Data driven prediction of fragment velocity distribution under explosive loading conditions
1
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:3
2
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
3
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
Prediction of Lubricant Physicochemical Properties Based on Gaussian Copula Data Expansion
4
作者 Feng Xin Yang Rui +1 位作者 Xie Peiyuan Xia Yanqiu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期161-174,共14页
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO... The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability. 展开更多
关键词 base oil data augmentation machine learning performance prediction seagull algorithm
在线阅读 下载PDF
UAV data link anti-interference via SLHS-SVM-AdaBoost algorithm:Classification prediction and route planning
5
作者 Shuo Zeng Xiao-Jia Xiang +2 位作者 Yong-Peng Dou Jing-Cheng Du Guang He 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期37-52,共16页
The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this a... The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency. 展开更多
关键词 Anti-interference performance Classification prediction data link Route planning Sequential Latin hypercube sampling(SLHS) Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Real-time crash prediction on freeways using data mining and emerging techniques 被引量:5
6
作者 Jinming You Junhua Wang Jingqiu Guo 《Journal of Modern Transportation》 2017年第2期116-123,共8页
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with... Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways. 展开更多
关键词 Crash prediction detectors Web-crawl data Real time - Discrete loop Support vector machines
在线阅读 下载PDF
Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies 被引量:2
7
作者 Kai Zhang Hai-Qun Yu +7 位作者 Xiao-Peng Ma Jin-Ding Zhang Jian Wang Chuan-Jin Yao Yong-Fei Yang Hai Sun Jun Yao Jian Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期707-719,共13页
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for... For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching. 展开更多
关键词 multi-source information Automatic history matching Deep learning data assimilation Generative model
在线阅读 下载PDF
Spectrum Prediction Based on GAN and Deep Transfer Learning:A Cross-Band Data Augmentation Framework 被引量:6
8
作者 Fandi Lin Jin Chen +3 位作者 Guoru Ding Yutao Jiao Jiachen Sun Haichao Wang 《China Communications》 SCIE CSCD 2021年第1期18-32,共15页
This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained mode... This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework. 展开更多
关键词 cognitive radio cross-band spectrum prediction deep transfer learning generative adversarial network cross-band data augmentation framework
在线阅读 下载PDF
Oilfield analogy and productivity prediction based on machine learning: Field cases in PL oilfield, China
9
作者 Wen-Peng Bai Shi-Qing Cheng +3 位作者 Xin-Yang Guo Yang Wang Qiao Guo Chao-Dong Tan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2554-2570,共17页
In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this... In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development. 展开更多
关键词 data mining technique Analogy parameters Oilfield analogy Productivity prediction Software platform
在线阅读 下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
10
作者 Zhong-Yu Li Hong-Xia Ge Rong-Jun Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
在线阅读 下载PDF
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 被引量:2
11
作者 伍雪冬 王耀南 +1 位作者 刘维亭 朱志宇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期546-551,共6页
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in... On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 展开更多
关键词 prediction of time series with missing data random interruption failures in the observation neural network approximation
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
12
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield data-driven modeling Multiscale prediction data decomposition Convolution neural network
在线阅读 下载PDF
Floating Car Data Based Nonparametric Regression Model for Short-Term Travel Speed Prediction 被引量:2
13
作者 翁剑成 扈中伟 +1 位作者 于泉 任福田 《Journal of Southwest Jiaotong University(English Edition)》 2007年第3期223-230,共8页
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,... A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective. 展开更多
关键词 K-Nearest neighbor Short-term prediction Travel speed Nonparametric regression Intelligence transportation system( ITS Floating car data (FCD)
在线阅读 下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
14
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
在线阅读 下载PDF
A geographical similarity-based sampling method of non-fire point data for spatial prediction of forest fires 被引量:1
15
作者 Quanli Xu Wenhui Li +1 位作者 Jing Liu Xiao Wang 《Forest Ecosystems》 SCIE CSCD 2023年第2期195-214,共20页
Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,... Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk. 展开更多
关键词 Spatial prediction of forest fires data-driven models Geographic similarity Non-fire point data data confidence
在线阅读 下载PDF
Big Data-Based Transformer Substation Fault Prediction Method 被引量:1
16
作者 Xin Wu Jian Li Qi Huang 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第2期173-185,共13页
Transformer substations play a major role in power systems.The fault of a transformer substation will jeopardize the safety and effective operation of the power system.The fault signal of a transformer substation incl... Transformer substations play a major role in power systems.The fault of a transformer substation will jeopardize the safety and effective operation of the power system.The fault signal of a transformer substation includes the fault status and fault occurrence time.In this paper,we propose a transformer substation fault prediction method based on big data analysis.Thus,a new transformer substation fault prediction method is developed by combining the advantages of decision tree algorithms and grey system theory to predict the fault status and occurrence time with high accuracy.As a case study,the transformer substation fault signals obtained from a region in the southwest of China are analyzed using the proposed method based on big data.The experimental results confirm that the proposed method achieves high-accuracy fault prediction. 展开更多
关键词 Big data decision tree grey system theory power system prediction
在线阅读 下载PDF
Prediction of Coal Seam Methane Enriched Areas Using Seismic Data
17
作者 CHEN Tong-jun CUI Ruo-fei +1 位作者 LIU En-ru LANG Yu-quan 《Journal of China University of Mining and Technology》 EI 2006年第4期421-424,共4页
All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such dis... All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The proce- dure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of imped- ance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected. 展开更多
关键词 methane enriched area prediction azimuth anisotropy AVO analysis INVERSION multi-source information
在线阅读 下载PDF
Predicting formation lithology from log data by using a neural network 被引量:6
18
作者 Wang Kexiong Zhang Laibin 《Petroleum Science》 SCIE CAS CSCD 2008年第3期242-246,共5页
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the... In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field. 展开更多
关键词 Kela-2 gas field neural network improved back-propagation (BP) model log data lithology prediction
在线阅读 下载PDF
An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction 被引量:4
19
作者 胡淑娟 邱春雨 +3 位作者 张利云 黄启灿 于海鹏 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期669-677,共9页
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ... Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. 展开更多
关键词 numerical weather prediction model error past data inverse problem
在线阅读 下载PDF
Potential Off-Grid User Prediction System Based on Spark 被引量:2
20
作者 LI Xuebing SUN Ying +4 位作者 ZHUANG Fuzhen HE Jia ZHANG Zhao ZHU Shijun HE Qing 《ZTE Communications》 2019年第2期26-37,共12页
With the increasingly fierce competition among communication operators,it is more and more important to make an accurate prediction of potential off grid users.To solve the above problem,it is inevitable to consider t... With the increasingly fierce competition among communication operators,it is more and more important to make an accurate prediction of potential off grid users.To solve the above problem,it is inevitable to consider the effectiveness of learning algo rithms,the efficiency of data processing,and other factors.Therefore,in this paper,we,from the practical application point of view,propose a potential customer off grid predic tion system based on Spark,including data pre processing,feature selection,model build ing,and effective display.Furthermore,in the research of off grid system,we use the Spark parallel framework to improve the gcForest algorithm which is a novel decision tree ensemble approach.The new parallel gcForest algorithm can be used to solve practical problems,such as the off grid prediction problem.Experiments on two real world datasets demonstrate that the proposed prediction system can handle large scale data for the off grid user prediction problem and the proposed parallel gcForest can achieve satisfying per formance. 展开更多
关键词 data MINING OFF grid prediction SPARK parallel computing deep FOREST
在线阅读 下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部