期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
基于Attention与改进SCINet模型的无线传感器网络能量预测与分簇路由算法
1
作者 金崇强 徐震 王雪山 《河南师范大学学报(自然科学版)》 北大核心 2025年第5期52-59,I0010,共9页
针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在... 针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在新特征序列的每个时间步上计算注意力权重,捕捉重要特征,提高模型预测精度.最后,根据节点剩余能量、预测未来可收集的太阳能能量,对分簇路由算法进行改进.仿真实验结果表明,该能量预测模型具备更高的预测精度和泛化能力.在能量预测模型的基础上,改进的分簇路由算法,能有效地延长无线传感器网络的生命周期. 展开更多
关键词 能量预测 样本卷积交互神经网络 概率稀疏自注意力机制 分簇路由算法
在线阅读 下载PDF
基于多头自注意力机制与MLP-Interactor的多模态情感分析
2
作者 林宜山 左景 卢树华 《浙江大学学报(工学版)》 北大核心 2025年第8期1653-1661,1679,共10页
针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质... 针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质量.通过MLP-Interactor机制实现多模态特征之间的充分交互,学习不同模态之间的一致性信息.利用提出方法,在CMU-MOSI和CMU-MOSEI 2个公开数据集上进行大量的实验验证与测试.结果表明,提出方法超越了当前诸多的先进方法,可以有效地提升多模态情感分析的准确性. 展开更多
关键词 多模态情感分析 MLP-interactor 多头自注意力机制 特征交互
在线阅读 下载PDF
融合依存信息Attention机制的药物关系抽取研究 被引量:1
3
作者 李丽双 钱爽 +2 位作者 周安桥 刘阳 郭元凯 《中文信息学报》 CSCD 北大核心 2019年第2期89-96,共8页
药物关系(Drug-Drug Interaction,DDI)抽取是生物医学关系抽取领域的重要分支,现有方法主要强调实体、位置等信息对关系抽取的影响。相关研究表明,依存信息对于关系抽取具有重要作用,如何合理利用依存信息是关系抽取研究中需要解决的问... 药物关系(Drug-Drug Interaction,DDI)抽取是生物医学关系抽取领域的重要分支,现有方法主要强调实体、位置等信息对关系抽取的影响。相关研究表明,依存信息对于关系抽取具有重要作用,如何合理利用依存信息是关系抽取研究中需要解决的问题。该文提出一种融合依存信息Attention机制的药物关系抽取模型,衡量最短依存路径与句子的相关性,捕捉对实体间关系有用的信息。首先使用双向GRU(BiGRU)网络分别学习原句子和最短依存路径(Shortest Dependency Path,SDP)的语义信息和上下文信息,然后通过Attention机制将SDP信息与原句子信息融合,最后利用融合依存信息之后的句子表示进行分类预测。在DDIExtraction2013语料上进行了实验评估,模型F值为73.72%。 展开更多
关键词 生物医学关系抽取 药物关系抽取 依存信息 attention
在线阅读 下载PDF
基于Attention-BiLSTM网络的车辆换道意图识别 被引量:1
4
作者 黄开启 罗涛 《浙江工业大学学报》 CAS 北大核心 2023年第3期264-270,共7页
针对换道意图识别方法仅考虑车辆历史状态信息,未充分利用车辆连续性和时序性特征的问题,提出了一种基于Attention-BiLSTM网络的换道意图识别方法。首先,分析行驶车辆之间的交互行为,采用双向长短期记忆网络学习换道意图特征编码信息;其... 针对换道意图识别方法仅考虑车辆历史状态信息,未充分利用车辆连续性和时序性特征的问题,提出了一种基于Attention-BiLSTM网络的换道意图识别方法。首先,分析行驶车辆之间的交互行为,采用双向长短期记忆网络学习换道意图特征编码信息;其次,通过引入模拟人脑推理行为的注意力机制进行网络权重自适应分配,提高网络捕捉重要状态信息能力;最后,利用HighD车辆轨迹数据集对模型进行训练和评估。试验结果表明:所提出的Attention-BiLSTM模型与LSTM模型相比,其准确率和F1分数分别提高了13.2%和10.5%,有效提升网络对周围车辆换道意图的识别性能。 展开更多
关键词 换道意图识别 双向长短期记忆网络 注意力机制 交互行为
在线阅读 下载PDF
Graph-based method for human-object interactions detection 被引量:1
5
作者 XIA Li-min WU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期205-218,共14页
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d... Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods. 展开更多
关键词 human-object interactions visual relationship context information graph attention network
在线阅读 下载PDF
基于尺度交互蒸馏网络的薄壳山核桃品种识别方法 被引量:2
6
作者 赵宁 陈智坤 +3 位作者 杨朋飞 王瑞多 张计育 李永荣 《农业工程学报》 北大核心 2025年第5期209-216,共8页
薄壳山核桃是一种重要的经济坚果,由于品种繁多,对其进行快速科学的鉴定是进行种质资源保护与品种选育的重要基础。为了实现薄壳山核桃品种的快速鉴定,该研究针对品种鉴定提出了基于尺度交互蒸馏网络的薄壳山核桃品种识别方法,通过学习... 薄壳山核桃是一种重要的经济坚果,由于品种繁多,对其进行快速科学的鉴定是进行种质资源保护与品种选育的重要基础。为了实现薄壳山核桃品种的快速鉴定,该研究针对品种鉴定提出了基于尺度交互蒸馏网络的薄壳山核桃品种识别方法,通过学习薄壳山核桃的可判别性特征实现品种鉴定。研究选择波尼等12种薄壳山核桃,建立了9048张实拍图像的品种识别数据集;针对薄壳山核桃图片取样中距离变化导致的目标尺度多样性问题,设计了一种全局-局部特征协同学习方案,用于提取尺度不变特征;与此同时,该研究结合尺度知识蒸馏方案,通过训练提取的不同尺度数据进行预测保证模型训练的有效性。结果表明,通过训练该方法对上述12个品种的薄壳山核桃品种识别准确率均达到了96.98%,显著提高了薄壳山核桃的品种鉴定准确率。该研究开发的薄壳山核桃品种自动识别模型对于未来果实鉴定及产品分选提供了技术手段。 展开更多
关键词 薄壳山核桃 品种鉴定 尺度交互蒸馏 多尺度上下文注意融合 知识蒸馏
在线阅读 下载PDF
基于时空交互网络的人体行为检测方法研究 被引量:1
7
作者 田青 张浩然 +2 位作者 楚柏青 张正 豆飞 《计算机应用与软件》 北大核心 2025年第4期156-165,共10页
针对现有的人体行为检测方法中,存在特征融合能力较差、时序信息相关性不强和行为边界不明确等问题,提出一种基于时空交互网络的人体行为检测方法。重新设计了双流特征提取模块,在空间流和时空流两个网络之间添加连接层;分别在空间流和... 针对现有的人体行为检测方法中,存在特征融合能力较差、时序信息相关性不强和行为边界不明确等问题,提出一种基于时空交互网络的人体行为检测方法。重新设计了双流特征提取模块,在空间流和时空流两个网络之间添加连接层;分别在空间流和时间流网络中引入改进的空间变换网络和视觉注意力模型;设计基于像素筛选器的特征融合模块,用于重点区域时序信息相关性的计算和两类不同维度特征的聚合;对网络的损失函数进行了优化。在AVA数据集上的实验结果表明该方法在检测精度、速度以及泛化能力上具有优越性。 展开更多
关键词 时空交互网络 人体行为检测 视觉注意力 特征融合 损失函数
在线阅读 下载PDF
互动平台信息交流能否提升上市公司内部控制质量?——来自“互动易”和“e互动”的数据证据 被引量:3
8
作者 尹海员 查茹娜 《财经论丛》 北大核心 2025年第4期87-100,共14页
本文利用2012—2023年间我国沪深两市A股上市公司在投资者互动平台上的交流数据,分析互动平台信息交流行为对公司内部控制质量的影响效应及其规律。研究发现,网络互动平台的信息交流可以发挥外部治理效应,从互动数量和互动质量两个维度... 本文利用2012—2023年间我国沪深两市A股上市公司在投资者互动平台上的交流数据,分析互动平台信息交流行为对公司内部控制质量的影响效应及其规律。研究发现,网络互动平台的信息交流可以发挥外部治理效应,从互动数量和互动质量两个维度衡量的平台信息交流行为都能显著提升上市公司内控质量,其中互动质量的提升效应相较于互动数量更为明显。进一步分析发现,媒体报道关注度在这一影响效应中起到了中介作用,并且以声誉机制和市场压力两种形式体现。对目标导向的内控分项指数回归发现,网络互动平台信息交流主要显著正向作用于战略指数与资产安全指数。对规模较小、董事会秘书更为尽责的样本公司来说,互动平台信息交流所产生的内控质量提升效应更为显著。本文研究结论对于透视交易所互动平台的公司治理效应,以及拓展上市公司内控质量提升路径等方面具有借鉴意义。 展开更多
关键词 投资者互动平台 内控质量 信息交流 媒体关注
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络 被引量:1
9
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 多尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
基于联合交互注意力的图文情感分析方法
10
作者 胡慧君 丁子毅 +1 位作者 张耀峰 刘茂福 《北京航空航天大学学报》 北大核心 2025年第7期2262-2270,共9页
社交媒体中的图文情感对于引导舆论走向具有重要意义,越来越受到自然语言处理(NLP)领域的广泛关注。当前,社交媒体图文情感分析的研究对象主要为单幅图像文本对,针对无时序性及多样性的图集文本对的研究相对较少,为有效挖掘图集中图像... 社交媒体中的图文情感对于引导舆论走向具有重要意义,越来越受到自然语言处理(NLP)领域的广泛关注。当前,社交媒体图文情感分析的研究对象主要为单幅图像文本对,针对无时序性及多样性的图集文本对的研究相对较少,为有效挖掘图集中图像与文本之间情感一致性信息,提出基于联合交互注意力的图文情感分析(SA-JIA)方法。该方法使用RoBERTa和双向门控循环单元(Bi-GRU)来提取文本表达特征,使用ResNet50获取图像视觉特征,利用联合注意力来找到图文情感信息表达一致的显著区域,获得新的文本和图像视觉特征,采用交互注意力关注模态间的特征交互,并进行多模态特征融合,进而完成情感分类任务。在IsTS-CN数据集和CCIR20-YQ数据集上进行了实验验证,结果表明:所提方法能够提升社交媒体图文情感分析的性能。 展开更多
关键词 社交媒体 图文情感分析 联合注意力 交互注意力 多模态融合
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
11
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
面向点云理解的双邻域图卷积方法
12
作者 李宗民 徐畅 +2 位作者 白云 鲜世洋 戎光彩 《浙江大学学报(工学版)》 北大核心 2025年第5期879-889,共11页
针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计... 针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计双邻域图卷积,通过集成高斯自适应聚合,在提取较大感受野范围内显著特征的同时,充分保留原始邻域信息.通过局部-全局信息交互来增大局部点的空间跨度,捕获远距离依赖关系.本文方法在分类数据集ModelNet40和ScanObjectNN上分别取得了94.1%、89.6%的总体精度,与其他先进算法相比有显著提升,较DGCNN分别提升了1.2%、11.5%.在部件分割数据集ShapeNetPart和语义分割数据集ScanNetv2、S3DIS上均获得优秀的性能,平均交并比分别为86.7%、74.9%和69.8%.通过大量的实验,证明了该模型的有效性. 展开更多
关键词 点云特征 图卷积网络 几何增强 局部全局交互 注意力机制
在线阅读 下载PDF
基于跨域交互注意力和对比学习引导的红外与可见光图像融合
13
作者 邸敬 梁婵 +1 位作者 刘冀钊 廉敬 《中国光学(中英文)》 北大核心 2025年第2期317-332,共16页
现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,导致纹理细节模糊。针对这一问题,本文提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外... 现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,导致纹理细节模糊。针对这一问题,本文提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外和可见光图像中分别提取和增强细节信息,并利用跳跃连接避免信息丢失,生成增强后的细节图像。接着,构建了联合双分支编码器和跨域交互注意力模块的图像融合网络,确保特征融合时充分进行特征交互,并通过解码器重建为最终的融合图像。然后,引入了通过对比学习块进行浅层和深层属性和内容的对比学习网络,优化特征表示,进一步提升图像融合网络的性能。最后,为了约束网络训练以保留源图像的固有特征,设计了一种基于对比约束的损失函数,以辅助融合过程对源图像信息的对比保留。将提出方法与前沿融合方法进行了定性和定量的分析比较。在TNO、MSRS、RoadSence数据集上的实验结果表明:本文方法的8项客观评价指标均较对比方法有显著提升。本文方法融合后图像具有丰富的细节纹理、显著的清晰度和对比度,有效提高了道路交通、安防监控等实际应用中的目标识别和环境感知能力。 展开更多
关键词 红外与可见光图像融合 对比学习 跨域交互注意力机制 对比约束损失
在线阅读 下载PDF
基于跨模态特征交互和多尺度重建的红外与可见光图像融合
14
作者 姚睿 王凯 +2 位作者 郭浩帆 胡文涛 田祥瑞 《红外与激光工程》 北大核心 2025年第8期259-270,共12页
针对弱光环境下红外与可见光图像融合存在的纹理细节丢失、视觉效果和实时性差等问题,提出了一种基于跨模态特征交互和多尺度重建(Cross-modal Feature Interaction and Multi-scale Reconstruction,CFIMR)的红外与可见光图像融合算法CF... 针对弱光环境下红外与可见光图像融合存在的纹理细节丢失、视觉效果和实时性差等问题,提出了一种基于跨模态特征交互和多尺度重建(Cross-modal Feature Interaction and Multi-scale Reconstruction,CFIMR)的红外与可见光图像融合算法CFIMRFusion。该算法构建了包括卷积注意力增强模块、编码器网络、跨模态特征交互融合模块和基于多尺度重建的解码器网络的四阶段融合框架。首先,设计卷积注意力增强模块提升弱可见光图像的对比度和纹理可见性,并利用编码器网络从红外图像和增强后的可见光图像中提取深层多尺度特征。然后,提出基于通道-空间注意力的跨模态特征交互融合模块,对红外显著特征和可见光细节特征进行互补融合。最后,为解决使用普通解码器重建图像时出现特征消失等问题,将融合得到的多尺度特征以跳跃连接的方式输入到解码器各级,重建高保真的融合图像。实验结果表明,CFIMRFusion融合图像的细节特征和整体视觉效果优于对比算法;且与最优对比算法相比,融合图像在TNO数据集中平均梯度、边缘强度分别提升了15.8%、18.2%,在LLVIP数据集中互信息、标准差分别提升了11.5%、9.5%,在MSRS数据集中边缘强度提升了10.1%;三个数据集上的融合速度分别为最快对比算法的24.1%、23.86%和25.2%。 展开更多
关键词 图像融合 图像增强 注意力机制 自编码网络 跨模态特征交互
在线阅读 下载PDF
考虑时空信息结合的电力系统暂态稳定评估
15
作者 李欣 李文斌 +3 位作者 赵张飞 李新宇 欧阳子帅 郭攀锋 《电力系统及其自动化学报》 北大核心 2025年第6期68-80,共13页
为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分... 为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分挖掘电力系统运行数据中的时序特征信息及空间特征信息,并采用拼接操作对特征信息进行融合,提升模型对电力系统暂态稳定特征的提取与表征能力。然后,引入焦点损失函数提升模型对失稳样本的辨识能力,并采用物理知识对其进行改进,以增加模型评估结果的可信性。最后,分别采用IEEE 39、IEEE 145和IEEE 300节点系统对所提模型进行验证,实验结果表明,所提评估模型相较其他评估模型具有更优的评估性能及可信性。 展开更多
关键词 暂态稳定评估 时空特征 图注意力 交互卷积 物理知识
在线阅读 下载PDF
基于图时空注意力的多车交互轨迹预测模型
16
作者 张新锋 赵娟 +1 位作者 刘国华 刘鹏菲 《汽车技术》 北大核心 2025年第3期30-38,共9页
为有效提取高速交通场景下车辆间的交互特征,从而准确预测动态障碍轨迹,基于编-解码框架,提出基于图时空注意力的多车交互轨迹预测模型。结合斥力场和图模型建立车-车图交互场,利用节点和邻接特征矩阵表征车辆之间的动态交互,通过图空... 为有效提取高速交通场景下车辆间的交互特征,从而准确预测动态障碍轨迹,基于编-解码框架,提出基于图时空注意力的多车交互轨迹预测模型。结合斥力场和图模型建立车-车图交互场,利用节点和邻接特征矩阵表征车辆之间的动态交互,通过图空间注意力和时间多头注意力提取深层时空交互,获取图时空融合编码;将车辆横纵向行为意图独热编码与其拼接,实现目标车辆多模态轨迹预测。利用NGSIM数据集进行验证,相较于其他6种模型,该模型RMSE和NLL值最低;通过消融实验进一步验证图交互场的有效性,结果表明,该模型能够有效提高车辆轨迹预测精度。 展开更多
关键词 多车交互 斥力场 注意力机制 图模型 轨迹预测
在线阅读 下载PDF
多维度聚合Transformer的图像超分辨率重建
17
作者 陈清江 陈鹏民 《光学精密工程》 北大核心 2025年第12期1955-1970,共16页
针对现有基于Transformer的图像超分辨率网络中感受野尺度单一以及未充分挖掘额外维度信息等问题,本文提出了一种多维度聚合Transformer网络。首先,通过构建多尺度交互调制模块,从低分辨率图像中提取多尺度特征,以增强信息流的丰富性。... 针对现有基于Transformer的图像超分辨率网络中感受野尺度单一以及未充分挖掘额外维度信息等问题,本文提出了一种多维度聚合Transformer网络。首先,通过构建多尺度交互调制模块,从低分辨率图像中提取多尺度特征,以增强信息流的丰富性。其次,设计了空间-通道交互模块,并将其集成于Transformer层中,利用四种形式的注意力机制充分提取关键特征并实现特征融合,从而提升模型性能。最后,提出了特征重用Transformer模块,深入挖掘各层特征之间的关联,精准提取并高效重用重要特征,进一步加强模型表现。实验结果表明,在五个基准测试集上,所提方法优于其他先进算法。在不同放大倍数的超分辨率任务中,相较于基于Swin Transformer的图像恢复方法,峰值信噪比和结构相似度分别平均提升了约0.26 dB和0.0024,且重建效果更加清晰。该方法有效克服了现有方法的不足,在超分辨率任务中展现出显著的性能提升和应用潜力。 展开更多
关键词 图像超分辨率 TRANSFORMER 注意力机制 特征交互 特征重用 多尺度
在线阅读 下载PDF
结合CNN-Transformer特征交互的红外与可见光图像融合方法
18
作者 张德银 张裕尧 +1 位作者 李俊佟 吴章辉 《红外技术》 北大核心 2025年第7期813-822,共10页
针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合... 针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合网络设计了新的空间通道混合注意力机制以提升全局及局部特征的提取效率并得到混合特征块;其次,利用CNN-Transformer的特征交互获取融合混合特征块,并构建多尺度重构网络以实现图像特征重构输出;最后,使用TNO数据集将新融合网络与其它9种融合网络进行对比图像融合实验。实验结果表明,新融合网络获得的融合图像在视觉感知方面表现优异,既突出了红外特征和物体轮廓,又保留了丰富的背景纹理细节;网络在EN、SD、AG、SF、SCD以及VIF指标上相较于现有融合网络平均提高约64.73%、8.17%、69.05%、66.34%、15.39%和25.66%。消融实验证明了新模型的有效性。 展开更多
关键词 CNN-Transformer特征交互 全局特征 混合注意力 图像融合 局部特征
在线阅读 下载PDF
基于改进RT-DETR的葡萄叶片病害检测
19
作者 王海瑞 胡灿 +1 位作者 朱贵富 蒋晨 《湖南农业大学学报(自然科学版)》 北大核心 2025年第4期117-124,共8页
针对葡萄叶片相似表现症状的病害识别率较低及细小病害检测困难的问题,提出一种基于改进RT-DETR网络的葡萄叶片病害检测方法。首先,采用坐标注意力(CA)机制对可变形卷积网络v2(DCNv2)模块进行改进,构建DCNv2_CA模块以增强目标特征的提... 针对葡萄叶片相似表现症状的病害识别率较低及细小病害检测困难的问题,提出一种基于改进RT-DETR网络的葡萄叶片病害检测方法。首先,采用坐标注意力(CA)机制对可变形卷积网络v2(DCNv2)模块进行改进,构建DCNv2_CA模块以增强目标特征的提取能力,并在模型的主干特征提取部分加入DCNv2_CA模块来提高模型对病害深层关键特征的提取能力;其次,在模型的特征交互模块中引入高低频特征交互(HiLo)注意力机制,使模型能同时关注特征的高低频信息,提高模型对葡萄细小病害的检测能力;最后,用聚合–分发机制重构模型的跨层融合网络,使其能更充分地融合各个层级之间的信息,进一步提升模型对相似表型症状病害的识别性能。结果表明:改进RT-DETR模型的病害检测准确率、召回率和平均精度均值分别达到了90.8%、89.5%和93.4%,相较于初始模型分别提升了5.4、3.9和5.6个百分点,且相对于其他模型也具有明显的优势。综上可见,改进后的RT-DETR模型能够准确地实现葡萄叶片病害检测。 展开更多
关键词 葡萄叶片 目标检测 病害检测 RT-DETR 注意力机制 可变形卷积网络 高低频特征交互 聚合–分发机制
在线阅读 下载PDF
具有特征交互适应的3D双手网格重建方法
20
作者 刘佳 张家辉 陈大鹏 《信号处理》 北大核心 2025年第7期1291-1302,共12页
从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解... 从单张RGB图像中实现双手的3D交互式网格重建是一项极具挑战性的任务。由于双手之间的相互遮挡以及局部外观相似性较高,导致部分特征提取不够准确,从而丢失了双手之间的交互信息并使重建的手部网格与输入图像出现不对齐等问题。为了解决上述问题,本文首先提出一种包含两个部分的特征交互适应模块,第一部分特征交互在保留左右手分离特征的同时生成两种新的特征表示,并通过交互注意力模块捕获双手的交互特征;第二部分特征适应则是将此交互特征利用交互注意力模块适应到每只手,为左右手特征注入全局上下文信息。其次,引入三层图卷积细化网络结构用于精确回归双手网格顶点,并通过基于注意力机制的特征对齐模块增强顶点特征和图像特征的对齐,从而增强重建的手部网格和输入图像的对齐。同时提出一种新的多层感知机结构,通过下采样和上采样操作学习多尺度特征信息。最后,设计相对偏移损失函数约束双手的空间关系。在InterHand2.6M数据集上的定量和定性实验表明,与现有的优秀方法相比,所提出的方法显著提升了模型性能,其中平均每关节位置误差(Mean Per Joint Position Error,MPJPE)和平均每顶点位置误差(Mean Per Vertex Position Error,MPVPE)分别降低至7.19 mm和7.33 mm。此外,在RGB2Hands和EgoHands数据集上进行泛化性实验,定性实验结果表明所提出的方法具有良好的泛化能力,能够适应不同环境背景下的手部网格重建。 展开更多
关键词 双手重建 注意力机制 特征交互适应 特征对齐 图卷积网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部