In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa...In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.展开更多
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a...针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。展开更多
针对目前由于行人重识别普遍存在的遮挡以及多姿态变化等原因,导致的行人重识别率低的问题,提出一种基于多尺度加权特征融合的行人重识别方法(Person Re-identification Method Based on Multi-scale Weighted Feature Fusion,MSWF)。...针对目前由于行人重识别普遍存在的遮挡以及多姿态变化等原因,导致的行人重识别率低的问题,提出一种基于多尺度加权特征融合的行人重识别方法(Person Re-identification Method Based on Multi-scale Weighted Feature Fusion,MSWF)。该方法首先使用基准网络ResNeSt-50提取图像特征,获得下采样3倍、下采样4倍和下采样5倍的特征图,输入到加权特征金字塔网络中,然后使用快速归一化融合方法进行特征融合,在特征融合中引入加权操作可以让模型在训练过程中学习如何给融合特征的权重值进行分配,这样可以充分利用不同尺度的特征,获得更加丰富的行人特征。最后将融合后的富含语义信息的高层特征作为全局特征,将融合后的高分辨率特征作为局部特征。在训练过程中,联合Softmax分类损失函数、三元组损失函数和中心损失函数对模型进行训练,在测试阶段,将全局特征和局部特征沿通道维度进行拼接表示行人特征,并使用欧氏距离计算行人之间的距离。该方法在Market-1501、DukeMTMC-reID、CUHK03-Labeled和CUHK03-Detected数据集上,mAP分别达到了89.2%、79.7%、80.1%和76.6%,Rank-1分别达到了95.8%、90.4%、82.4%和80.1%。实验结果说明了该算法的识别精度和平均正确率优于当前很多主流算法。展开更多
文摘In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.
文摘针对目前由于行人重识别普遍存在的遮挡以及多姿态变化等原因,导致的行人重识别率低的问题,提出一种基于多尺度加权特征融合的行人重识别方法(Person Re-identification Method Based on Multi-scale Weighted Feature Fusion,MSWF)。该方法首先使用基准网络ResNeSt-50提取图像特征,获得下采样3倍、下采样4倍和下采样5倍的特征图,输入到加权特征金字塔网络中,然后使用快速归一化融合方法进行特征融合,在特征融合中引入加权操作可以让模型在训练过程中学习如何给融合特征的权重值进行分配,这样可以充分利用不同尺度的特征,获得更加丰富的行人特征。最后将融合后的富含语义信息的高层特征作为全局特征,将融合后的高分辨率特征作为局部特征。在训练过程中,联合Softmax分类损失函数、三元组损失函数和中心损失函数对模型进行训练,在测试阶段,将全局特征和局部特征沿通道维度进行拼接表示行人特征,并使用欧氏距离计算行人之间的距离。该方法在Market-1501、DukeMTMC-reID、CUHK03-Labeled和CUHK03-Detected数据集上,mAP分别达到了89.2%、79.7%、80.1%和76.6%,Rank-1分别达到了95.8%、90.4%、82.4%和80.1%。实验结果说明了该算法的识别精度和平均正确率优于当前很多主流算法。