期刊文献+
共找到37,636篇文章
< 1 2 250 >
每页显示 20 50 100
基于时差的多输出tri-training异构软测量建模 被引量:1
1
作者 王大芬 唐莉丽 +3 位作者 张鑫焱 聂春雨 李明珠 吴菁 《化工学报》 北大核心 2025年第3期1143-1155,共13页
软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一... 软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。 展开更多
关键词 TRI-training 软测量 时间差分 协同训练 集成 预测 过程控制
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
2
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
3
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
基于Tri-training的半监督SVM 被引量:15
4
作者 李昆仑 张伟 代运娜 《计算机工程与应用》 CSCD 北大核心 2009年第22期103-106,共4页
当前机器学习面临的主要问题之一是如何有效地处理海量数据,而标记训练数据是十分有限且不易获得的。提出了一种新的半监督SVM算法,该算法在对SVM训练中,只要求少量的标记数据,并能利用大量的未标记数据对分类器反复的修正。在实验中发... 当前机器学习面临的主要问题之一是如何有效地处理海量数据,而标记训练数据是十分有限且不易获得的。提出了一种新的半监督SVM算法,该算法在对SVM训练中,只要求少量的标记数据,并能利用大量的未标记数据对分类器反复的修正。在实验中发现,Tri-training的应用确实能够提高SVM算法的分类精度,并且通过增大分类器间的差异性能够获得更好的分类效果,所以Tri-training对分类器的要求十分宽松,通过SVM的不同核函数来体现分类器之间的差异性,进一步改善了协同训练的性能。理论分析与实验表明,该算法具有较好的学习效果。 展开更多
关键词 半监督学习 协同训练 Tri—training 支持向量机 最小二乘支持向量机
在线阅读 下载PDF
一种结合独立性模型与差异评估的Co-Training改进方案 被引量:7
5
作者 唐焕玲 林正奎 +1 位作者 鲁明羽 邬俊 《计算机研究与发展》 EI CSCD 北大核心 2008年第11期1874-1881,共8页
Co-Training算法要求两个特征视图满足一致性和独立性,但是,许多应用中不存在自然划分且满足这种假设的两个视图.为此,提出利用互信息(MI)或者CHI统计量评估特征之间的相互独立性,建立特征相互独立性模型(MID-Model).基于该模型,提出了... Co-Training算法要求两个特征视图满足一致性和独立性,但是,许多应用中不存在自然划分且满足这种假设的两个视图.为此,提出利用互信息(MI)或者CHI统计量评估特征之间的相互独立性,建立特征相互独立性模型(MID-Model).基于该模型,提出了新的特征子集划分方法PMID-MI与PMID-CHI算法,能有效地将一个特征集合划分成两个独立性较强的子集.并且利用多种差异评估法,进一步验证两个子集的独立性.基分类器之间的差异性能够减少两个基分类器给同一个未标注文本都标注错误的可能性.最后,提出了对Co-Training的改进算法SC-PMID.实验结果表明SC-PMID算法能够明显提高半监督分类精度. 展开更多
关键词 半监督分类 Co—training 标注文本 未标注文本 相互独立性模型 差异性评估
在线阅读 下载PDF
基于Tri-training半监督学习的中文组织机构名识别 被引量:4
6
作者 蔡月红 朱倩 程显毅 《计算机应用研究》 CSCD 北大核心 2010年第1期193-195,共3页
针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方法。该算法利用Tri-training学习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方法的分类器组合成一个分类体系,并... 针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方法。该算法利用Tri-training学习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方法的分类器组合成一个分类体系,并依据最优效用选择策略进行新加入样本的选择。在大规模真实语料上与co-training方法进行了比较实验,实验结果表明,此方法能有效利用大量未标注语料提高算法的泛化能力。 展开更多
关键词 中文组织机构名 半监督学习 协同训练 Tri—training
在线阅读 下载PDF
基于Tri-training的主动学习算法 被引量:3
7
作者 张雁 吴保国 +1 位作者 吕丹桔 林英 《计算机工程》 CAS CSCD 2014年第6期215-218,229,共5页
半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数... 半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。 展开更多
关键词 半监督学习 主动学习 Tri—training算法 熵优先采样 Tri-EPS算法
在线阅读 下载PDF
Co-Training——内容和链接的Web Spam检测方法 被引量:4
8
作者 魏小娟 李翠平 陈红 《计算机科学与探索》 CSCD 2010年第10期899-908,共10页
Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和... Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和基于网络图的链接特征,分别建立两个独立的基本分类器;使用Co-Training半监督式学习算法,借助大量未标记数据来改善分类器质量。在WEB SPAM-UK2007数据集上的实验证明:算法改善了SVM分类器的效果。 展开更多
关键词 WEB spam检测方法 内容作弊 链接作弊 Co—training算法
在线阅读 下载PDF
基于Co-training方法的车辆鲁棒检测算法 被引量:1
9
作者 陈阳舟 刘星 +1 位作者 辛乐 杨德亮 《北京工业大学学报》 CAS CSCD 北大核心 2013年第3期394-401,共8页
针对复杂交通场景车辆检测算法自适应能力差的问题,提出了基于Co-training半监督学习方法的车辆鲁棒检测算法.首先,针对手工标记的少量样本,分别训练基于Haar-like特征的AdaBoost分类器和基于HOG(histograms of oriented gradients)特征... 针对复杂交通场景车辆检测算法自适应能力差的问题,提出了基于Co-training半监督学习方法的车辆鲁棒检测算法.首先,针对手工标记的少量样本,分别训练基于Haar-like特征的AdaBoost分类器和基于HOG(histograms of oriented gradients)特征的SVM(support vector machines)分类器,使其具有一定的识别能力;然后,基于Co-training半监督学习框架,将利用2种算法进行分类得到的新样本分别加入到对方的样本库中,增加训练样本数量,再次进行分类器的训练.由于这2类特征具有冗余性,各自检测出的正负样本包含对方漏检和误检的图像.由于样本数的增加,再次训练所得到的新分类器的鲁棒性得到了很大提高,能更加准确地检测出车辆,而且由算法对未标记样本进行分类标记,不再需要人为标记,提高了车辆检测算法的自适应能力. 展开更多
关键词 车辆检测 Co—training Haar—like特征 ADABOOST分类器 HOG特征 SVM分类器
在线阅读 下载PDF
基于Co-training的图像自动标注
10
作者 柯逍 李绍滋 陈国龙 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期486-492,共7页
图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-trainin... 图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-training的图像自动标注方法,通过构建4个独立的特征属性进而建立4个子分类器,将不同的图像分割方法与特征表示方法整合到一个统一框架中,利用提出的基于投票与一致性相结合的自适应算法扩展原始训练集.该方法通过使用Co-training算法,利用大量未标注数据来提升图像自动标注的性能.通过在Corel 5K数据库上进行实验,验证了提出方法的有效性. 展开更多
关键词 图像自动标注 Co—training算法 统一框架 相关模型
在线阅读 下载PDF
基于辅助学习与富信息策略的Tri-training算法
11
作者 崔龙杰 王红丽 崔荣一 《计算机应用研究》 CSCD 北大核心 2014年第9期2685-2687,共3页
针对Tri-training算法利用无标记样例时会引入噪声且限制无标记样例的利用率而导致分类性能下降的缺点,提出了AR-Tri-training(Tri-training with assistant and rich strategy)算法。提出辅助学习策略,结合富信息策略设计辅助学习器,... 针对Tri-training算法利用无标记样例时会引入噪声且限制无标记样例的利用率而导致分类性能下降的缺点,提出了AR-Tri-training(Tri-training with assistant and rich strategy)算法。提出辅助学习策略,结合富信息策略设计辅助学习器,并将辅助学习器应用在Tri-training训练以及说话声识别中。实验结果表明,辅助学习器在Tri-training训练的基础上不仅降低每次迭代可能产生的误标记样例数,而且能够充分地利用无标记样例以及在验证集上的错分样例信息。从实验结果可以得出,该算法能够弥补Tri-training算法的缺点,进一步提高测试率。 展开更多
关键词 半监督学习 富信息策略 辅助学习策略 Tri—training 说话声识别
在线阅读 下载PDF
基于Tri-training的入侵检测算法 被引量:2
12
作者 邬书跃 余杰 樊晓平 《计算机工程》 CAS CSCD 2012年第6期158-160,共3页
半监督的双协同训练要求划分出的2个数据向量相互独立,不符合真实的网络入侵检测数据特征。为此,提出一种基于三协同训练(Tri-training)的入侵检测算法。使用大量未标记数据,通过3个分类器对检测结果进行循环迭代训练,避免交叉验证。仿... 半监督的双协同训练要求划分出的2个数据向量相互独立,不符合真实的网络入侵检测数据特征。为此,提出一种基于三协同训练(Tri-training)的入侵检测算法。使用大量未标记数据,通过3个分类器对检测结果进行循环迭代训练,避免交叉验证。仿真实验表明,在少量样本情况下,该算法的检测准确度比SVM Co-training算法提高了2.1%,并且随着循环次数的增加,其性能优势更加明显。 展开更多
关键词 入侵检测 小样本 支持向量机 半监督 双协同训练 三协同训练
在线阅读 下载PDF
基于改进DE-Tri-Training算法的汉语多词表达抽取 被引量:2
13
作者 梁颖红 谭红叶 +3 位作者 鲜学丰 黄丹丹 钱海忠 沈春泽 《数据采集与处理》 CSCD 北大核心 2017年第1期141-148,共8页
多词表达的识别错误会对很多自然语言处理任务造成不利影响。DE-Tri-Training半指导聚类算法在聚类初期使用有指导的标注信息,取得了较好的抽取结果。本文采用基于中心词扩展的初始聚类中心确定方法和基于有指导信息的一致性协同学习数... 多词表达的识别错误会对很多自然语言处理任务造成不利影响。DE-Tri-Training半指导聚类算法在聚类初期使用有指导的标注信息,取得了较好的抽取结果。本文采用基于中心词扩展的初始聚类中心确定方法和基于有指导信息的一致性协同学习数据净化方法,提出了半指导策略抽取汉语多词表达,聚类算法的中后期也加入有指导的信息,使分类器能使用正确的标注信息进行训练。通过与DETri-Training算法的对比实验,改进的DE-Tri-Training算法得到的汉语多词表达抽取结果优于原来的算法,验证了改进DE-Tri-Training算法的有效性。 展开更多
关键词 多词表达 半指导 协同训练
在线阅读 下载PDF
基于互联网和self-training的中文问答模式学习 被引量:2
14
作者 李志圣 孙越恒 +1 位作者 何丕廉 候越先 《计算机应用》 CSCD 北大核心 2008年第6期1575-1577,1581,共4页
在已有的问答模式学习中,模式定义和候选答案评分偏于简单,而且学习过程依赖于人工标定语料。通过挖掘W eb文本中动、名词序列的骨架模式,用以扩充模式定义;将self-train ing学习机制引入问答模式学习:用一对训练语料进行初始学习,通过... 在已有的问答模式学习中,模式定义和候选答案评分偏于简单,而且学习过程依赖于人工标定语料。通过挖掘W eb文本中动、名词序列的骨架模式,用以扩充模式定义;将self-train ing学习机制引入问答模式学习:用一对训练语料进行初始学习,通过互联网搜索,自动选择可靠程度较高的问答对,重新训练;扩充了启发规则,改进候选答案的评分方法。实验结果表明:所提出的问答模式学习方法能有效地提高中文问答系统的性能。 展开更多
关键词 互联网 问答模式 SELF-training 机器学习
在线阅读 下载PDF
基于Tri-training的半监督多标记学习算法 被引量:4
15
作者 刘杨磊 梁吉业 +1 位作者 高嘉伟 杨静 《智能系统学报》 CSCD 北大核心 2013年第5期439-445,共7页
传统的多标记学习是监督意义下的学习,它要求获得完整的类别标记.但是当数据规模较大且类别数目较多时,获得完整类别标记的训练样本集是非常困难的.因而,在半监督协同训练思想的框架下,提出了基于Tri-training的半监督多标记学习算法(SM... 传统的多标记学习是监督意义下的学习,它要求获得完整的类别标记.但是当数据规模较大且类别数目较多时,获得完整类别标记的训练样本集是非常困难的.因而,在半监督协同训练思想的框架下,提出了基于Tri-training的半监督多标记学习算法(SMLT).在学习阶段,SMLT引入一个虚拟类标记,然后针对每一对类别标记,利用协同训练机制Tri-training算法训练得到对应的分类器;在预测阶段,给定一个新的样本,将其代入上述所得的分类器中,根据类别标记得票数的多少将多标记学习问题转化为标记排序问题,并将虚拟类标记的得票数作为阈值对标记排序结果进行划分.在UCI中4个常用的多标记数据集上的对比实验表明,SMLT算法在4个评价指标上的性能大多优于其他对比算法,验证了该算法的有效性. 展开更多
关键词 多标记学习 半监督学习 TRI-training
在线阅读 下载PDF
基于图的Co-Training网页分类 被引量:9
16
作者 侯翠琴 焦李成 《电子学报》 EI CAS CSCD 北大核心 2009年第10期2173-2180,2219,共9页
本文充分利用网页数据的超链接关系和文本信息,提出了一种用于网页分类的归纳式半监督学习算法:基于图的Co-training网页分类算法(Graph based Co-training algorithmfor web page classification),简称GCo-training,并从理论上证明了... 本文充分利用网页数据的超链接关系和文本信息,提出了一种用于网页分类的归纳式半监督学习算法:基于图的Co-training网页分类算法(Graph based Co-training algorithmfor web page classification),简称GCo-training,并从理论上证明了算法的有效性.GCo-training在Co-training算法框架下,迭代地学习一个基于由超链接信息构造的图的半监督分类器和一个基于文本特征的Bayes分类器.基于图的半监督分类器只利用少量的标记数据,通过挖掘数据间大量的关系信息就可达到比较高的预测精度,可为Bayes分类器提供大量的标记信息;反过来学习大量标记信息后的Bayes分类器也可为基于图的分类器提供有效信息.迭代过程中,二者互相帮助,不断提高各自的性能,而后Bayes分类器可以用来预测大量未见数据的类别.在Web→KB数据集上的实验结果表明,与利用文本特征和锚文本特征的Co-training算法和基于EM的Bayes算法相比,GCo-training算法性能优越. 展开更多
关键词 半监督 CO-training 归纳式 网页分类
在线阅读 下载PDF
基于Co-Training的协同目标跟踪 被引量:4
17
作者 王路 卓晴 王文渊 《计算机工程》 CAS CSCD 北大核心 2009年第3期202-204,共3页
运动目标跟踪是计算机视觉的核心问题之一,广泛应用于诸多领域。该文提出一种基于Co-Training半监督学习框架的目标跟踪方法。该方法融合2种互相独立的特征信息来描述目标模型,采用Co-Training来协同更新模型,有效避免了现有方法的误差... 运动目标跟踪是计算机视觉的核心问题之一,广泛应用于诸多领域。该文提出一种基于Co-Training半监督学习框架的目标跟踪方法。该方法融合2种互相独立的特征信息来描述目标模型,采用Co-Training来协同更新模型,有效避免了现有方法的误差累积问题。实验结果证明,该方法在复杂场景下仍能实现稳定有效的跟踪。 展开更多
关键词 目标跟踪 联合训练 半监督学习 特征融合
在线阅读 下载PDF
一种改进的协同训练算法:Compatible Co-training 被引量:11
18
作者 郭翔宇 王魏 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期662-671,共10页
半监督学习是机器学习近年来的热点研究方向,而协同训练(Co-training)则是半监督学习中的重要范式,它利用双视图训练两个分类器来互相标记样本以扩大训练集,以此借助未标记样本提升学习性能.在实际应用中,视图通常会受到属性退化和噪声... 半监督学习是机器学习近年来的热点研究方向,而协同训练(Co-training)则是半监督学习中的重要范式,它利用双视图训练两个分类器来互相标记样本以扩大训练集,以此借助未标记样本提升学习性能.在实际应用中,视图通常会受到属性退化和噪声的影响而变得不充分(即视图不能提供足够的信息来正确预测样本的标记).在不充分视图下,两个视图上的最优分类器变得不再兼容,一个视图中的分类器标记的样本可能不利于另一个视图学得最优分类器.针对这一问题,提出一种改进的协同训练算法Compatible Co-training,它记录学习过程中每个未标记样本被赋予的标记,通过比较更新后的分类器对样本预测的标记与其初始标记,动态地删除标记不一致的样本,从而除去不利于学得最优分类器的样本.实验结果显示出Compatible Co-training比协同训练具有更好的泛化能力和更快的收敛速度. 展开更多
关键词 半监督学习 协同训练 不充分视图 不一致标记
在线阅读 下载PDF
基于自适应数据剪辑策略的Tri-training算法 被引量:15
19
作者 邓超 郭茂祖 《计算机学报》 EI CSCD 北大核心 2007年第8期1213-1226,共14页
Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove O... Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove Only剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定Remove Only触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性. 展开更多
关键词 半监督学习 数据剪辑 自适应策略 PAC可学习 TRI-training
在线阅读 下载PDF
基于Tri-training半监督学习的JPEG隐密分析方法 被引量:3
20
作者 郭艳卿 孔祥维 +1 位作者 尤新刚 何德全 《通信学报》 EI CSCD 北大核心 2008年第10期205-209,214,共6页
提出了一种基于半监督学习机制的JPEG隐密分析方法。通过三类DCT域统计特征和多超球面OC-SVM算法构建三种独立的隐密分析方法,并以Tri-training学习方式迭代地对未标记图像样本进行标记,来扩充原训练样本集,进而可以利用大量未标记属性... 提出了一种基于半监督学习机制的JPEG隐密分析方法。通过三类DCT域统计特征和多超球面OC-SVM算法构建三种独立的隐密分析方法,并以Tri-training学习方式迭代地对未标记图像样本进行标记,来扩充原训练样本集,进而可以利用大量未标记属性的图像样本提高隐密分析算法的泛化能力。由JSteg、F5、Outguess、MB1含密图像与载体图像所组成的混合图像库上的仿真实验结果验证了此方法的有效性。 展开更多
关键词 隐密分析 半监督学习 TRI-training 多超球面 一类支持向量机
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部