This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from ...In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from almost unmanageable to be partly solved, though not fully, as per the requirement. In this parametric approach, a multi-scale least square method is formulated first. By propagating as well as improving the parameters down from layer to layer of the image pyramid, a new global feature line can then be detected to parameterize the attitude of the robots. Furthermore, this approach paves the way for segmenting the image into distinct parts, which can be realized by deploying a Bayesian classifier on the picture cell level. Comparison with the Hough transform based method in terms of robustness and precision shows that this multi-scale least square algorithm is considerably more robust to noises. Some discussions are also given.展开更多
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as...Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
文摘In aerial robots' visual navigation, it is essential yet very difficult to detect the attitude and position of the robots operated in real time. By introducing a new parametric model, the problem can be reduced from almost unmanageable to be partly solved, though not fully, as per the requirement. In this parametric approach, a multi-scale least square method is formulated first. By propagating as well as improving the parameters down from layer to layer of the image pyramid, a new global feature line can then be detected to parameterize the attitude of the robots. Furthermore, this approach paves the way for segmenting the image into distinct parts, which can be realized by deploying a Bayesian classifier on the picture cell level. Comparison with the Hough transform based method in terms of robustness and precision shows that this multi-scale least square algorithm is considerably more robust to noises. Some discussions are also given.
文摘Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.