期刊文献+
共找到640篇文章
< 1 2 32 >
每页显示 20 50 100
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
1
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning multi-scale convolution Open-circuit convolutional neural network
在线阅读 下载PDF
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
2
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
3
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
4
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
5
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
6
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型 被引量:3
7
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测 被引量:1
8
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法 被引量:1
9
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
基于注意力时间卷积神经网络的光伏功率概率预测 被引量:1
10
作者 李青 《太阳能学报》 北大核心 2025年第2期326-332,共7页
针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制... 针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制,构建注意力时间卷积神经网络(ATCNN),通过分层卷积结构提取时间依赖关系,利用稀疏注意力关注重要的时间步,构建的稀疏注意力层无需更深的架构即可扩展感受野,并使预测结果更具可解释性。在两个光伏数据集上的功率概率预测结果表明,ATCNN的预测准确性优于TCNN、时间融合解码器(TFT)等先进深度学习模型,同时对于感受野的扩展,ATCNN比TCNN需要的卷积层更少、训练速度更快,并能可视化预测过程中最重要的时间步。同卷积层情况下,ATCNN比TCNN的点预测损失小15.7%,概率预测损失小15.9%。 展开更多
关键词 光伏功率 预测 时间卷积网络 稀疏注意力机制 可解释性
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:2
11
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于CEEMDAN与TCN-Attention的陆态网络GNSS高程时间序列多尺度预测 被引量:1
12
作者 罗亦泳 占奥文 冯小欢 《大地测量与地球动力学》 北大核心 2025年第8期781-790,共10页
提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-注意力机制(temporal convolutional network-attention mechanism,TCN-Attention)算法的... 提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-注意力机制(temporal convolutional network-attention mechanism,TCN-Attention)算法的多尺度预测模型(简称C-TCN-A),该模型可有效应用于GNSS高程时间序列缺失数据的插补和未来趋势的预测。该模型利用CEEMDAN对时间序列进行多尺度分解,然后基于TCN-Attention对不同尺度分量进行预测和重构得到预测结果。为验证模型的性能,选取12个观测站进行1 d与5 d预测,并与其他多种模型进行对比。结果表明,在1 d预测中,C-TCN-A的RMSE和MAE分别降低35%~40%和36%~41%,相关系数R提高25%~29%;在5 d预测中,C-TCN-A的RMSE和MAE分别降低20%~26%和20%~28%,相关系数R提高26%~33%。为验证模型的普适性,利用C-TCN-A对陆态网络99个观测站进行1 d与5 d预测。结果表明,RMSE和MAE指标总体上结果较好,误差分布集中,大多数误差小于4 mm;预测精度存在一定的空间分布差异,西北地区效果最佳。 展开更多
关键词 GNSS高程时间序列 陆态网络 改进经验模态分解 时间卷积网络
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
13
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于双重注意力时间卷积长短期记忆网络的短期负荷预测
14
作者 李丽芬 张近月 +1 位作者 曹旺斌 梅华威 《系统仿真学报》 北大核心 2025年第8期2004-2015,共12页
为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相... 为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。 展开更多
关键词 负荷预测 时间卷积网络 注意力 残差结构 相关性分析
在线阅读 下载PDF
基于改进图卷积的多站点海浪高度预测方法
15
作者 卢鹏 王慧 +1 位作者 王振华 郑宗生 《海洋测绘》 北大核心 2025年第4期37-42,共6页
海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-mean... 海浪高度的变化不仅随时间变化,还受周围海域的影响。针对现有方法仅关注单一站点的时序特征,缺乏对同一区域内不同站点间海浪高度的时空信息提取问题,提出一种改进图卷积的多站点海浪高度预测模型SD-STSGCN。首先采用基于密度的K-means聚类对站点分组;其次提出缩放距离因子构建邻接矩阵以动态调整权重;最后结合扩张卷积的时空同步图卷积模块捕捉时空特征,非线性映射输出各组站点未来时段的海浪高度预测结果。在覆盖多维度场景的44个站点上进行大区域实验,结果表明,相比于LSTM和TCN等模型,SD-STSGCN的预测效果最好,该方法有效挖掘了多站点时空相关性,为海浪高度预测提供了有效的补充方案。 展开更多
关键词 海浪高度预测 多站点预测 时空同步图卷积 时空相关性 邻接矩阵
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
16
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于动态图卷积Transformer的瓦斯浓度预测模型
17
作者 董立红 赵楠楠 +1 位作者 王丹 秦昳 《工矿自动化》 北大核心 2025年第9期72-80,共9页
准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导... 准确预测瓦斯浓度对预防瓦斯灾害事故至关重要,预测精度受瓦斯浓度时间变化规律和瓦斯扩散时空分布特征的双重影响。现有的模型驱动预测方法难以胜任长期和大规模瓦斯浓度预测任务,而数据驱动预测方法未考虑动态空间维度特征的影响,导致模型泛化性能较差。为了捕获瓦斯浓度变化的时空依赖性,提高瓦斯预测精确性,提出一种融合多尺度机制的时序−动态图卷积Transformer(TDMformer)并用于构建瓦斯浓度预测模型。在ITransformer框架基础上,设计了时序−变量注意力机制,用于同时建模时序与变量维度特征;融合动态图卷积网络,用于描述井下瓦斯传感器网络拓扑结构,捕获瓦斯浓度数据的空间依赖性;引入多尺度门控Tanh单元,以增强多尺度特征提取能力。实验结果表明,与Graph−WaveNet,GRU,Transformer,AGCRN,DSformer,STAEformer,FourierGNN等模型相比,TDMformer模型的均方根误差分别降低了24.87%,26.37%,21.69%,19.57%,11.90%,10.84%,9.20%,平均绝对误差分别降低了17.09%,25.58%,26.89%,14.56%,11.10%,5.75%,4.53%,拟合系数分别提高了5.94%,6.51%,4.79%,4.12%,2.21%,2.08%,1.76%,验证了该模型具有更高的预测精度和数据拟合度。 展开更多
关键词 瓦斯浓度预测 TRANSFORMER ITransformer 动态图卷积网络 时序-变量注意力机制
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
18
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
动静图融合和时序流注意力网络用于交通流预测
19
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 流注意力机制 图卷积网络 特征融合
在线阅读 下载PDF
融合时空特征的多模态车辆轨迹预测方法
20
作者 史昕 王浩泽 +1 位作者 纪艺 马峻岩 《计算机工程与应用》 北大核心 2025年第7期325-333,共9页
针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间... 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。 展开更多
关键词 车辆轨迹预测 深度学习 图神经网络 时域卷积网络 注意力机制
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部